The New York Times Building

New York, NY

IPD/BIM Thesis Technical Report #1

Benjamin R. Barben, Erika L. Bonfanti, & Andres R. Perez Structural Option

> Faculty Consultant: Dr. Andres Lepage October 5th, 2009

TABLE OF CONTENTS

EXECUTIVE SUMMARY	2
INTRODUCTION	3
STRUCTURAL SYSTEM	5
Foundation	5
Floor System	5
Columns	6
Vierendeel Frame	7
Lateral System	
CODES AND REFERENCES	
MATERIAL STRENGTHS	11
LOADINGS	
Gravity Loads	
Dead Loads	
Live Loads	13
Snow Loads	14
Lateral Loads	15
Wind Loads	15
Seismic Loads	25
Miscellaneous Loads	
TYPICAL FLOOR FRAMING SPOT CHECKS	
Metal Decking	
Typical Composite Beam	
Typical Composite Girder	
Typical Column	
ANALYSIS & CONCLUSIONS	
APPENDIX A: LATERAL SYSTEMS	
APPENDIX B: TYPICAL BAY SPOT CHECKS	
APPENDIX C: TYPICAL COLUMN CHECKS	
APPENDIX D: WIND ANALYSIS	
APPENDIX E: SEISMIC ANALYSIS	
APPENDIX F: SITE PHOTOS	

EXECUTIVE SUMMARY

The purpose of the first technical report is to analyze and compile the existing structural conditions for the New York Times Headquarters in New York City. The building houses the New York Times newsroom, retail spaces along its base, as well as New York Times and rentable corporate offices in the tower. As a result of an architectural competition, Renzo Piano's design intends to exemplify transparency and lightness through every detail, as well as become a signature building in the New York City skyline. Exposed structural elements and connections were designed with great attention to the overall appearance of the building.

Gravity, wind, and seismic systems were studied in detail to yield a basis of design for the structure as produced by Thornton Tomasetti. Codes and methods applied to the analyses are outlined within the report, as well as a more comprehensive discussion and depiction of each system and other elements requiring future consideration. Calculations are also provided in the appendices for reference.

Gravity loads were compiled and analyzed using ASCE 7-05 and IBC 2006; both codes are more recent than the Building Code of the City of New York used for the original design. A typical bay was investigated to compare beam, girder, and column sizes for accuracy using assumed dead and live loads. Values obtained from analysis were slightly lower than those used in the original design; this could be due to a difference in live load reductions or an increase in member sizes due to lateral forces. A wind analysis was completed by referencing ASCE 7-05; however, Thornton Tomasetti performed wind tunnel tests on the structure, possibly leading to different final lateral values. Seismic forces were obtained from Chapters 11 and 12 of ASCE 7, but did not control laterally over wind in each principal direction of analysis.

In addition to the structural investigation of the gravity and lateral loads, parameters such as thermal loading, building drift due to wind or seismic, and cantilevers must be considered to fully understand the structure of the New York Times Headquarters. Although these factors and elements are not within the scope of this report, they are presented as essential future considerations.

INTRODUCTION

Figure 1: Typical Tower Framing Plan

The New York Times Headquarters Building is home to the New York Times newsroom and twenty six floors of Times offices, as well as several law firms whose offices are leased through Forest City Ratner. Designed by architect Renzo Piano in association with FFFOWLE Architects, it was intended to be a flagship building promoting sustainability, lightness, and transparency. The architectural façade reflects the ever changing environment surrounding the building, an appropriate acknowledgement of the heart of New York City.

The building rises fifty two stories with a height of 744 feet to the main roof. A 300 feet mast then extends up into the sky topping out at 1048 feet above Eighth Avenue between 40th and 41st Streets. The New York Times building totals 1.5 million square feet with the New York Times Company owning 800,000 square feet and Forest City Ratner Companies owning the other 700,000 square feet. It has one 16'-0" level below grade. The ground level contains a lobby, retail space and a glass-enclosed garden. The New York Times' newsroom occupies the entire five-story podium which is east of the tower structure. The tower ascends above the podium an additional forty eight stories. Story heights average approximately 13'-9" in the tower, lending a great view to the open office plans. At the mechanical floors on levels twenty eight and fifty one though, the floor height is approximately 27'-0" to accommodate equipment and two-story outriggers.

The steel structural system is comprised of composite floor beams and columns configured as shown in Figure 1, with lateral chevron and K braces in both the East-West and North-South directions. Foundations are a combination of concrete spread footings and caissons to develop the required capacity. Many structural elements are also architectural details, including the exposed X bracing on the exterior of the structure and the built-up columns at the corner notches. Overall, the building exhibits ingenuity in design and construction, with close attention paid to every detail.

STRUCTURAL SYSTEM

Foundation

The foundation of the New York Times Headquarters combines typical spread footings with caissons to achieve its maximum axial capacity. Below the building's 16-foot cellar, the tower and podium mostly bear on rock; Class 1-65 and 2-65 per the New York City Building Code, with a capacity of 20 - 40 ton per square foot. However, the rock at the southeast corner of the tower only had an 8 ton per square foot capacity; Class 4-65. Of the seven columns that fall within this area (indicated in Figure 2) 24-inch diameter concrete-filled steel caissons were used. Each caisson was designed to support a load of 2,400 kips with 6,000 psi concrete.

Under the other 21 columns (indicated on Figure 2) spread footings of unknown dimensions with a compressive strength of 6,000 psi are used to support the loads. The columns which fall in the cantilevered areas do not directly transfer load to the ground

cantilevered areas do not directly transfer load to the ground Figure 2: Found which removes the need for footings at these locations.

The New York City Subway does pass the north and eastern sides of the New York Times Building. However, this is not a major site restriction since the transit system passes below Eighth Avenue and 41st Street and not directly beneath the structure. Although, vibration effects on the foundation and building structure may have had an impact on the design.

Floor System

The floor system is a composite system with a typical bay size of $30'-0"x \ 40'-0"$ surrounding the 90'-0" x 65'-0" core. There are 60'-0" x 20'-0" cantilever bays on the north and south sides of the tower. The floor system is made up of $2 \frac{1}{2}"$ normal weight concrete on 3" metal deck, typically spanning 10'-0" from W12x19 to W18x35 infill beams. The W12x19 and W18x35 beams span into W18x40 girders. The girders frame into the various built-up columns, box columns along the exterior and built-up non-box columns in the

Figure 3: 'Dog-leg' beam connection, courtesy of Thornton Tomasetti

Barben | Bonfanti | Perez IPD/BIM Structural Option Dr. Andres Lepage 10/05/2009

core. Framing of the core consists of W12 and HSS shapes framing into W14 and W16 shapes which frame into W33 girders that frame into the core columns.

In the New York Times spaces, the structural slab is 16" below the finish floor and the spandrel panel, due to the raised floor system for the under floor mechanical systems. For all the exterior steel of the building to maintain a centerline at the center of the spandrel panel, a crooked connection or 'dog-leg' was used. The 'dog-leg' connection allows for the end of the beam to rise 10" before it leaves the

Figure 4: 'Dog-leg' penetrating building envelope

interior of the building and penetrates the building envelope. Figure 4 shows the 'dog-leg' connection penetrating the building envelope.

Columns

The 30"x30" box columns at the exterior notches (Figure 5) of the tower consist of two 30" long flange plates and two web plates inset 3" from the exterior of the column on either side. The two web plates of the welded box column vary from 7" thick at the ground floor to 1" thick at the fifty second floor. This is to account for the different steel areas needed for the higher forces at the bottom of the building. To maintain consistent proportions at all floors, a hierarchy of flange plate thicknesses was developed. At the ground floor, each flange plate is 4" thick and decreases to 2" thick at the fifty second floor. See Figure 6 for box column hierarchy. Although the yield strength of the plates also varies with tower height, the strength was assumed to be a uniform 50 ksi for calculations. Interior columns are a combination of built-up sections and rolled shapes. Column locations stay consistent throughout the height of the building, and every perimeter column is engaged in the lateral system which will be described later.

Figure 5: Typical Floor Plan with Column Notches

Barben | Bonfanti | Perez IPD/BIM Structural Option Dr. Andres Lepage 10/05/2009 The New York Times Building New York, NY Technical Report #1

Vierendeel Frame

A Vierendeel system was used at the 20 foot cantilever sections of the tower. Renzo Piano did not want columns obstructing the glass storefronts at the ground level, so these sections were cantilevered from the main structure. The middle line of the cantilevered bays have beams moment connected to the columns thus creating the Vierendeel system and engaging every floor except at the outrigger levels. At the outrigger level; floor twenty eight and fifty two, large diagonal braces tie the middle line back to the core through the outrigger trusses. In extreme loading conditions, this provides a redundant load path. See Figure 7 for Vierendeel frame location. At the exterior beam lines of the cantilever, 2" diameter steel rods were connected from the columns to the ends of the beams to control deflection at every floor. This allowed the beams to be designed only for strength, thus avoiding bulky exterior members.

Figure 7: Cantilevered bays from exterior

Lateral System

The main lateral load resisting system for the tower of the New York Times Building consists of a centralized steel braced frame core with outriggers on the two mechanical floors (Levels 28 and 51). The structural core consists of chevron and single diagonal bracing which surrounds elevator shafts, MEP shafts, and stair wells. At this time, the member sizes of these braces have yet to be disclosed. The core configuration remains consistent from the ground level to the 27th floor as shown in Figure 8. But above the 28th floor, the low rise elevators were no longer required. In order to optimize the rentable space on the upper levels of the tower, the number of bracing lines in the North-South direction were reduced from two to one (Figure 9). Please refer to Figure 10 and Figure 11 to view the typical core bracing configurations.

The outriggers on the mechanical floors consist of Chevron braces (Figure 22 in Appendix A) and single diagonal braces. The outrigger system was designed to increase the efficiency and redundancy of the tower by engaging the perimeter columns into the lateral system. Please refer to Appendix A to view the framing plans and bracing elevations of the outrigger system.

Single Diagonal Bracing Pre-Tensioned Steel Rod X-Bracing Chevron & Open Knee Bracing

Figure 10: Typical Core N/S Core Bracing Elevation

Figure 11: Typical Core E/W Core Bracing Elevation

During the design of the tower, the engineers at Thornton Tomasetti sized the members of the main lateral force resisting system merely for strength. In order to increase stiffness and meet deflection criterion, the structural engineers utilized the double story steel rod X-braces (original to Renzo Piano's exterior design) instead of increasing the member sizes of the main lateral force resisting system. These X-braces can be seen in Figure 32 of Appendix F and in Figure 8 and Figure 9 on previous page. The high strength steel rods transition from 2.5" to 4" in diameter and were prestressed to 210 kips. This induced tensile load prevents the need for large compression members, which prevents the members from buckling and conforms to the architectural vision of the exterior.

Although the X-braces did reduce the need for an overall member size increase, the lateral system still did not completely conform to the deflection criterion. Therefore, some of the 30" by 30" base columns were designed as built-up solid sections which reduced the building drift caused by the building's overturning moment. After combining these solid base columns and the X-braces with the main lateral force resisting system, the calculated deflection of the tower due to wind was L/450 with a 10 year return period and a building acceleration of less than 0.025g for non-hurricane winds.

According to information obtained from the structural engineer, the podium of the New York Times Building was designed with a separate lateral system. Though information about the podium was not disclosed by the owner, an educated guess can be made about its lateral system. The podium contains the New York Times Newsroom; therefore it can be assumed that steel bracing, which would cut down on the usable floor space, would not be used. Also, the use of concrete shear walls would go against the architect's "transparent" building design. Therefore, it can be assumed that the lateral system of the podium is designed as a steel moment resisting frame.

CODES AND REFERENCES

Design Codes

National Model Code: 1968 Building Code of the City of New York with latest supplements

Structural Standards:

ASCE 7-98, Minimum Design Loads for Buildings and other Structures

Structural Design Codes:

AISC – LRFD, Steel Construction Manual 2nd edition, American Institute of Steel Construction

ACI 135-74 Manual of standard Practice for detailing Reinforced Concrete Structures

ACI 318-99 American Concrete Institute Building Code Requirements for Reinforced Concrete

ACI 530-95 Building Code Requirements for Masonry Structures National Building Code of Canada, 1995 Uniform Building Code, 1997

Thesis Codes

National Model Code: 2006 International Building Code

Structural Standards:

ASCE 7-05, Minimum Design Loads for Buildings and other Structures

Design Codes:

AISC – LRFD, Steel Construction Manual 13th edition, American Institute of Steel Construction

Design Deflection Criteria

Lateral Deflections:

Total building sway deflection for ten year wind loading is limited to H/450

Thermal Deflections:

The shortening and elongating effects due to thermal fluctuations is designed to L/300.

Thesis Deflection Criteria

Lateral Deflections:

Total building sway deflection for ten year wind loading is limited to H/450 Allowable inter-story drift due to wind is H/400 to H/600 (ASCE 7-05 § CC.1.2) Building story sway deflection for seismic loading is limited to 0.015h_{sx} (ASCE 7-05 TABLE 12.12-1)

Thermal Deflections:

The shortening and elongating effects due to thermal fluctuations is designed to L/300.

MATERIAL STRENGTHS

Concrete:
Foundation Walls, Buttresses, S.O.GCompressive strength of 4,000 psi, Normal Weight
Footings and PiersCompressive strength of 5,950 psi, Normal Weight
Concrete on Metal DeckCompressive strength of 4,000 psi, Normal Weight
Concrete Pads, Fill SlabsCompressive strength of 3,000 psi, Light Weight (115 PCF)
All Other Concrete
Reinforcing ASTM A-615 Grade 60
Welded Wire FabricASTM A185
Rock Anchor:
Dywidag Threadbars Anchors
High Strength PVC Corrugated SheathingCompressive strength of 7,000 psi
Plates
Structural Steel:
Rolled Shapes and ChannelsASTM A572 or A992, Minimum yield strength of 50 ks
Miscellaneous AnglesASTM A36, Minimum yield strength of 36 ks
"UAP" ChannelsEuropean Code EC3, Grade S-235JRG2, Minimum yield strength of 46 ksi
TubesASTM A500, Grade B, Minimum yield strength of 42 ksi
PipesASTM A500, Grade B, Minimum yield strength of 46 ksi
Plate Material used for Built-Up MembersASTM A572, Minimum yield strength of 50 ksi
Connections & Base PlateASTM A36 (36 ksi), A529 (42 ksi), A572 & A588 (50 ksi)
Diagonal & X-Braced RodsASTM A572, Grade 65
Metal Decking:
3" Composite DeckASTM A653 SQ, Grade 40, Minimum yield strength of 40 ks
Headed Shear Studs ³ / ₄ "ASTM A108, Type B
Connections:
BoltsASTM A325 or A490
NutsASTM A563
WashersASTM A-F436
Anchor Bolts/ RodsASTM F-1554, Grade 55
Welding Electrodes E70XXTensile strength of 70 ks
Masonry:
MortarType M or S
GroutCompressive strength of 3,000 ps
Concrete Masonry UnitsCompressive strength of 3,000 psi
ReinforcingASTM A-615, Grade 60

Barben | Bonfanti | Perez IPD/BIM Structural Option Dr. Andres Lepage 10/05/2009

LOADINGS

ASCE 7-05 and Thornton Tomasetti provided guidance to determine loading for both gravity and lateral loads.

Gravity Loads

Dead Loads

Typical Tower Floor Dead Load:		
Load Description	Design Load	
5.5" Slab with 20 GA 3" Composite Metal Deck (50+3 for deck)	53	psf
Ceiling (Floors have ACT, Drywall, and Special Architectural Ceilings)	5	psf
Mech., Elec., Plumbing in raised floor	12	psf
Mech., Elec., Plumbing in ceiling	8	psf
Allowance for Steel Framing + Fireproofing(paint & cementitious)*	15	psf
Total Typical Floor Dead Load:	93	psf
Total Typical Floor Dead Load for Seismic:	113 psf+25 psf(on elevated area of exter wall)	rior
*includes column weight therefore loading only applied to columns		

Table 1: Typical Tower Floor Dead Load

Typical Tower Mechanical Floor Dead Los	ad:
Load Description	Design Load
6" Slab with 20 GA 3" Composite Metal Deck	57 psf
Ceiling (Floors have ACT and Special Architectural Ceilings)	5 psf
Mech., Elec., Plumbing in ceiling	8 psf
Allowance for Steel Framing + Fireproofing(paint & cementitious)*	15 psf
Total Mechanical Floor Dead Load:	110 psf
Total Typical Floor Dead Load for Seismic:	130 psf+25 psf(on
	elevated area of exterior
	wall)
*includes column weight therefore loading only applied to columns	

Table 2: Typical Tower Mechanical Floor Dead Load

Load Description	Design Load
Curtain Wall with Horizontal Ceramic Rods, Aluminum and Frame	25 psf
Total Exterior Wall Dead Load:	25 psf

Table 3: Exterior Tower Wall System Dead Load

In the spot checks below, it is assumed that the system self weight of the wall creates a uniform load up the building.

Tower Mechanical Area Roof Dead Load:				
Load Description	Design Load			
8" Composite Deck	85 psf			
Allowance for Steel Framing + Fireproofing(paint & cementitious)*	15 psf			
Total Mechanical Area Roof Dead Load:	100 psf			
Total Typical Floor Dead Load for Seismic:	120 psf+25 psf(on elevated area of exterior wall)			
*includes column weight therefore loading only applied to columns				

Table 4: Tower Mechanical Area Roof Dead Load

Normal Tower Roof Dead Load:	
Load Description	Design Load
8" Composite Deck	85 psf
Allowance for Steel Framing + Fireproofing(paint & cementitious)*	15 psf
Total Normal Roof Dead Load:	100 psf
Total Typical Floor Dead Load for Seismic:	120 psf+25 psf(on elevated area of exterior wall)
*includes column weight therefore loading only applied to columns	

Table 5: Normal Tower Roof Dead Load

	Live Load	:
Load Description	ASCE 7-05 & NYC Bldg Code	Design Load
Office:	50 psf	50+20 (for partitions) = 70 psf
Technology Floors:	100 psf	100 psf
Elevator Lobbies:	75 psf	75 psf
Corridors above First Floor:	80/75 psf	75 psf
All Other Lobbies & Corridors:	100 psf	100 psf
Exit Facilities:	100 psf	100 psf
Retail Areas:	100 psf	100 psf
Kitchen:	100 psf	150 psf
Cafeteria:	100 psf	100 psf
Auditorium (with fixed seats):	60 psf	100 psf
Light Storage Area:	125/100 psf	100 psf
Loading Dock:	250 psf	250 psf or actual weight whichever is greater
Mechanical Floors:	125 psf	150 psf or actual weight whichever is greater
Mechanical/Fan Rooms:	75 psf	75 psf or actual weight whichever is greater
Sidewalks	250 psf	600 psf
Roofs:	20 psf	30 psf + Drift
Roof Garden	100 psf	Not Specified

Live Loads

Table 6: Live Loads

Since the weight of the mechanical equipment on the mechanical roof and the mechanical floor is unknown, and ASCE7-05 and the Building Code of the City of New York provides no minimum live load, the self weight of the equipment was conservatively assumed to be equivalent to light manufacturing therefore at a minimum the live load should be 125 psf.

Snow Loads

	Snow Loa	ad:
Load Description	ASCE 7-05 Design	New York City Building
	Load	Code
$p_g =$	25 psf	25 psf
$p_s =$	17.5 psf	17.5 psf
p _d =	35.28 psf	— psf

Since the weight of the snow on the roof plus snow drift is approximately two times smaller compared to the controlling roof live load and mechanical area roof live load, it is assumed to not control. *See below for snow load calculations.

Snow Load					
Load Description/Factor	n Load	Comments			
h =	72.84	feet	EMR height		
$\gamma = 0.13 p_g + 14 =$	17.25	pcf	ASCE7-05, eq. 7-3		
$h_b = p_s / \gamma =$	1.01	feet			
$h_{c} = h - h_{b} =$	71.83	feet			
$h_c / h_b =$	70.80	>0.2	drift load required		
$controlling l_u =$	66.00	feet			
$h_d = 0.43 (l_u)^{1/3} (p_g + 10)^{1/4} - 1.5 =$	2.73	feet	Figure 7-9 and equation		
$h_d = 0.75 h_d =$	2.05	feet			
$w = 4h_d =$	8.18	feet			
$8h_c =$	574.60	feet	> w therefore ok		
$p_d = h_d \gamma =$	35.28	psf			

Wind Loads

As mentioned, the 1968 Building Code of the City of New York was the governing code for the design of the New York Times Building. During the time of the building's design, this code permitted the use of a simplified approach for calculating the wind loads of all buildings not more that 300 ft within the Borough of Manhattan. Although, for structures which exceeded this height, the code required that wind load be determined using ASCE 7-98. Thornton Tomasetti opted to use a wind tunnel analysis (Method 3) within ASCE 7-98 to determine the wind design loads. However, for the analysis in this report, Method 2 of ASCE 7-05 was used. Unfortunately, the engineers have yet to divulge the results from wind tunnel analysis meaning a true comparison cannot be made to the actual wind design loadings. Also when comparing the Method 2 provisions from ASCE 7-98 to ASCE 7-05, it was found that few changes had been made between the two issues. This means that the results between the two versions would have minimal differences.

A few simplifying assumptions had to be made in order use Method 2 of ASCE 7-05. First of all, the tower was analyzed with a rectangular foot print instead of a cruciform shape. Essentially, area was added at the corners of the façade to simplify the corner notches. Secondly, the screens around each face of the roof top allow air flow through them. To consider the wind load transferred to the lateral system, the screens were first treated as if they were a solid face of the building. After the windward pressure was calculated on this "solid face", a multiplier of 0.5 was implemented to account for the permeability of the screen. The resulting pressure was then transferred to the building. It was also assumed that due to the permeability of the screens, no leeward pressure would develop.

The calculations for the wind pressures, loads, story shears, and overturning moments of the tower are shown in Table 8 to Table 12. The pressure and loading diagrams can also be viewed in Figures 9 through 12. The analysis shows that the controlling wind loads are in the East/West direction with a base shear of 9336 kips and overturning moment of 3.7 million ft-kips. This direction was expected to control due to its wider façade face. Please note that the base shears and overturning moments calculated in this report only consider the direct loading from windward and leeward pressures. In the future, a more detailed analysis will have to be performed to consider the building response due to roof suction and side wall suction. Ideally, loading should be obtained from a wind tunnel analysis. For additional calculations as well as the wind analysis of the podium, please refer to Appendix D.

Method 2 Wind Load Design Variables Summary				
Variable	Value	Unit	Reference	
V =	110	miles/hr	ASCE 7-05 6.5.4	
$K_d =$	0.85		ASCE 7-05 6.5.4.4	
Occupancy Category =	III		IBC Table 1604.5	
Importance factor =	1.15		ASCE 7-05 6.5.5	
Surface Roughness Category =	В		ASCE 7-05 6.5.2	
Exposure Category =	В		ASCE 7-05 6.5.6	
$K_{zt} =$	1		ASCE 7-05 6.5.7	
В =	194	Feet		
L =	157	Feet		
C -	1.032		West-East Direction	
G _f –	1.048		North-South Direction	

Table 7: Method 2 Wind Load Design Variables Summary

	Height	K. ^a	$\mathbf{q}_{\mu} \otimes \mathbf{q}_{\mu}$	External	Internal	Net Pressure p (ps		
	(z)	z	(psf)	Pressure	Pressure	P U		
			u,	(psf)	(psf)	+(GC _{ni})	-(GC _{ni})	
	15.0	0.57	17.40	14.4	9.6	4.8	23.9	
	33.4	0.72	21.87	18.1	9.6	8.5	27.6	
	48.9	0.81	24.39	20.1	9.6	10.6	29.7	
	63.8	0.87	26.31	21.7	9.6	12.2	31.3	
	77.8	0.92	27.85	23.0	9.6	13.4	32.6	
	86.0*	0.95	28.66	23.7	9.6	14.1	33.2	
	91.5	0.96	29.18	24.1	9.6	14.5	33.6	
	105.3	1.00	30.37	25.1	9.6	15.5	34.6	
	119.0	1.04	31.45	26.0	9.6	16.4	35.5	
	132.8	1.07	32.45	26.8	9.6	17.2	36.3	
	146.5	1.10	33.37	27.6	9.6	18.0	37.1	
	160.3	1.13	34.24	28.3	9.6	18.7	37.8	
	174.0	1.16	35.06	28.9	9.6	19.4	38.5	
	188.4	1.18	35.86	29.6	9.6	20.0	39.2	
	202.1	1.21	36.59	30.2	9.6	20.6	39.8	
	215.3	1.23	37.25	30.8	9.6	21.2	40.3	
	229.0	1.25	37.92	31.3	9.6	21.7	40.9	
	242.8	1.27	38.55	31.8	9.6	22.3	41.4	
	256.5	1.29	39.17	32.3	9.6	22.8	41.9	
	270.3	1.31	39.75	32.8	9.6	23.3	42.4	
/arc	284.0	1.33	40.32	33.3	9.6	23.7	42.8	
ndw	297.8	1.35	40.87	33.7	9.6	24.2	43.3	
Win	311.5	1.37	41.40	34.2	9.6	24.6	43.7	
	325.3	1.38	41.91	34.6	9.6	25.0	44.2	
	339.0	1.40	42.41	35.0	9.6	25.5	44.6	
	352.8	1.42	42.90	35.4	9.6	25.9	45.0	
	366.5	1.43	43.37	35.8	9.6	26.2	45.4	
	380.7	1.45	43.84	36.2	9.6	26.6	45.8	
	401.8	1.47	44.52	36.8	9.6	27.2	46.3	
	422.4	1.49	45.16	37.3	9.6	27.7	46.8	
	436.1	1.51	45.58	37.6	9.6	28.1	47.2	
	449.9	1.52	45.98	38.0	9.6	28.4	47.5	
	463.6	1.53	46.38	38.3	9.6	28.7	47.9	
	477.4	1.54	46.77	38.6	9.6	29.0	48.2	
	491.1	1.56	47.15	38.9	9.6	29.4	48.5	
	504.9	1.57	47.52	39.2	9.6	29.7	48.8	
	518.6	1.58	47.89	39.5	9.6	30.0	49.1	
	532.4	1.59	48.25	39.8	9.6	30.3	49.4	
	546.1	1.61	48.60	40.1	9.6	30.6	49.7	
	559.9	1.62	48.95	40.4	9.6	30.8	50.0	
	573.6	1.63	49.29	40.7	9.6	31.1	50.3	
	587.4	1.64	49.62	41.0	9.6	31.4	50.5	
	601.1	1.65	49.95	41.2	9.6	31.7	50.8	

	614.9	1.66	50.28	41.5	9.6	31.9	51.1
	628.6	1.67	50.60	41.8	9.6	32.2	51.3
	642.4	1.68	50.91	42.0	9.6	32.5	51.6
	656.1	1.69	51.22	42.3	9.6	32.7	51.8
	669.9	1.70	51.52	42.5	9.6	33.0	52.1
	683.6	1.71	51.82	42.8	9.6	33.2	52.3
	697.4	1.72	52.12	43.0	9.6	33.5	52.6
	711.5	1.73	52.42	43.3	9.6	33.7	52.8
	732.1	1.75	52.85	43.6	9.6	34.1	53.2
	745.5**	1.75	53.12	43.9	9.6	34.3	53.4
	802***	1.79	54.24	22.4	9.6	12.8	32.0
Leeward	All		53.12	-27.4	9.6	-37.0	-17.8
Side	All		53.12	-38.4	9.6	-47.9	-28.8
Roof	745.5		53.12	-57.0	9.6	-66.6	-47.4

* Top of Podium

****** Finish Floor Elevation of Roof

*** Top of Screen Elevation (0.5 multiplier is applied to account for the ability for wind to pass through the screen.)

^a $K_z = 2.01(15/z_g)2/a \{z_g < 15ft\}$ -or- $K_z = 2.01(z/z_g)2/a \{15 \text{ ft} < z < z_g\}$ [T 6-2, ASCE 7-05]

Table 8: Calculated Wind Pressures in West-East Direction of Tower

	Calculated Wind Pressures in North-South Direction of Tower											
	Height	17.9	q ₂ & q _b	External	Internal	Net Pre	ssure p					
	(z)	K _z "	(psf)	Pressure	Pressure	(pe	st)					
			u ,	(psf)	(psf)	+(GC _{pi})	-(GC _{pi})					
	15.0	0.57	17.40	14.6	9.6	5.0	24.2					
	33.4	0.72	21.87	18.3	9.6	8.8	27.9					
	48.9	0.81	24.39	20.4	9.6	10.9	30.0					
	63.8	0.87	26.31	22.1	9.6	12.5	31.6					
	77.8	0.92	27.85	23.4	9.6	13.8	32.9					
	86.0*	0.95	28.66	24.0	9.6	14.5	33.6					
	91.5	0.96	29.18	24.5	9.6	14.9	34.0					
	105.3	1.00	30.37	25.5	9.6	15.9	35.0					
	119.0	1.04	31.45	26.4	9.6	16.8	35.9					
arc	132.8	1.07	32.45	27.2	9.6	17.6	36.8					
dw	146.5	1.10	33.37	28.0	9.6	18.4	37.5					
Vin	160.3	1.13	34.24	28.7	9.6	19.2	38.3					
	174.0	1.16	35.06	29.4	9.6	19.8	39.0					
	188.4	1.18	35.86	30.1	9.6	20.5	39.6					
	202.1	1.21	36.59	30.7	9.6	21.1	40.2					
	215.3	1.23	37.25	31.2	9.6	21.7	40.8					
	229.0	1.25	37.92	31.8	9.6	22.2	41.4					
	242.8	1.27	38.55	32.3	9.6	22.8	41.9					
	256.5	1.29	39.17	32.8	9.6	23.3	42.4					
	270.3	1.31	39.75	33.3	9.6	23.8	42.9					
	284.0	1.33	40.32	33.8	9.6	24.3	43.4					

	297.8	1.35	40.87	34.3	9.6	24.7	43.8
	311.5	1.37	41.40	34.7	9.6	25.2	44.3
	325.3	1.38	41.91	35.1	9.6	25.6	44.7
	339.0	1.40	42.41	35.6	9.6	26.0	45.1
	352.8	1.42	42.90	36.0	9.6	26.4	45.5
	366.5	1.43	43.37	36.4	9.6	26.8	45.9
	380.7	1.45	43.84	36.8	9.6	27.2	46.3
	401.8	1.47	44.52	37.3	9.6	27.8	46.9
	422.4	1.49	45.16	37.9	9.6	28.3	47.4
	436.1	1.51	45.58	38.2	9.6	28.7	47.8
	449.9	1.52	45.98	38.6	9.6	29.0	48.1
	463.6	1.53	46.38	38.9	9.6	29.3	48.5
	477.4	1.54	46.77	39.2	9.6	29.7	48.8
	491.1	1.56	47.15	39.5	9.6	30.0	49.1
	504.9	1.57	47.52	39.9	9.6	30.3	49.4
	518.6	1.58	47.89	40.2	9.6	30.6	49.7
	532.4	1.59	48.25	40.5	9.6	30.9	50.0
	546.1	1.61	48.60	40.8	9.6	31.2	50.3
	559.9	1.62	48.95	41.0	9.6	31.5	50.6
	573.6	1.63	49.29	41.3	9.6	31.8	50.9
	587.4	1.64	49.62	41.6	9.6	32.1	51.2
	601.1	1.65	49.95	41.9	9.6	32.3	51.5
	614.9	1.66	50.28	42.2	9.6	32.6	51.7
	628.6	1.67	50.60	42.4	9.6	32.9	52.0
	642.4	1.68	50.91	42.7	9.6	33.1	52.3
	656.1	1.69	51.22	43.0	9.6	33.4	52.5
	669.9	1.70	51.52	43.2	9.6	33.6	52.8
	683.6	1.71	51.82	43.5	9.6	33.9	53.0
	697.4	1.72	52.12	43.7	9.6	34.1	53.3
	711.5	1.73	52.42	44.0	9.6	34.4	53.5
	732.1	1.75	52.85	44.3	9.6	34.8	53.9
	745.5**	1.75	53.12	44.5	9.6	35.0	54.1
	819***	1.80	54.57	22.9	9.6	13.3	32.4
Leeward	All		53.12	-24.8	9.6	-34.4	-15.3
Side	All		53.12	-38.4	9.6	-47.9	-28.8
Roof	745.5		53.12	-57.9	9.6	-67.5	-48.3

* Top of Podium

****** Finish Floor Elevation of Roof

*** Top of Screen Elevation (0.5 multiplier is applied to account for the ability for wind to pass through the screen.)

^a $K_z = 2.01(15/z_g)2/a \{z_g < 15ft\}$ -or- $K_z = 2.01(z/z_g)2/a \{15 \text{ ft} < z < z_g\}$ [T 6-2, ASCE 7-05]

 Table 9: Calculated Wind Pressures in North-South Direction of Tower

Calculated Wind Forces on Tower											
Level	Height Above	re Load (kips) Shear Moment (ft-ki									
	Ground (ft)		· • /	(ki	ps)						
		E/W	N/S	E/W	Ń/S	E/W	N/S				
2	25.66	181	125	9154	7313	4653	22602				
3	41.13	143	110	9012	7203	5867	15686				
4	56.59	142	110	8870	7094	8035	15568				
5	70.92	137	106	8732	6987	9733	14572				
6	86.00	137	106	8595	6881	11813	14616				
7	98.42	140	109	8455	6772	13777	15197				
8	112.17	142	111	8313	6662	15969	15735				
9	125.92	145	112	8168	6550	18203	16239				
10	139.67	147	114	8022	6436	20476	16714				
11	153.42	149	116	7873	6320	22784	17165				
12	167.17	150	117	7723	6203	25126	17594				
13	180.92	159	124	7564	6079	28680	19583				
14	195.83	154	120	7411	5960	30095	18414				
15	208.42	149	116	7262	5844	30963	17217				
16	222.17	157	122	7105	5721	34793	19142				
17	235.92	158	123	6947	5598	37277	19496				
18	249.67	159	124	6788	5474	39786	19839				
19	263.42	161	126	6627	5348	42319	20171				
20	277.17	162	127	6465	5221	44874	20495				
21	290.92	163	128	6302	5094	47452	20809				
22	304.67	164	129	6138	4965	50050	21116				
23	318.42	165	129	5973	4836	52670	21416				
24	332.17	167	130	5806	4705	55309	21708				
25	345.92	168	131	5639	4574	57968	21994				
26	359.67	169	132	5470	4442	60645	22274				
27	373.42	175	137	5295	4305	65272	23944				
28	388.00	262	205	5033	4100	101622	53782				
29	415.50	259	203	4774	3897	107549	52550				
30	429.25	173	136	4601	3761	74465	23610				
31	443.00	174	137	4427	3624	7/246	23860				
32	456.75	175	138	4251	3486	80043	24106				
33	470.50	176	138	4075	3348	82856	24347				
34	484.25	1//	139	3898	3209	85684	24585				
35	498.00	1/8	140	3/21	3069	88526	24820				
36	511./5	1/9	140	3542	2929	91383	25051				
37	525.50	1/9	141	3363	2/88	94254	252/8				
38 20	539.25	180	142	5182	264/	9/139	25503				
39	553.00	181	142	3002	2504	100038	25/25				
40	566./5	182	145	2820	2362	102951	25943				
41	580.50	182	145	2037	2218	100015	20159				
42	594.25	183	144	2454	2074	108815	265/2				
43	008.00	184	145	22/1	1930	111/00	20582				
44	621./5	185	145	2086	1/84	114/30	26/90				

45	635.50	185	146	1901	1639	117707	26996
46	649.25	186	146	1715	1492	120695	27199
47	663.00	187	147	1528	1345	123696	27400
48	676.75	187	147	1341	1198	126708	27599
49	690.50	188	148	1153	1050	129732	27795
50	704.25	193	152	960	898	135997	29368
51	718.67	284	224	676	674	204265	63635
Roof	745.50	431	410	245	264	321228	176730
Screen *	802 & 819	245	264				
Total	802 &819	9336	7438	9336	7438	3739561	1381094
* Loads from	n the screens are	superin	nposed	on to tl	he Roof	level.	

Table 12: Calculated Wind Forces on Tower

22.4 psf	_	
	1	
	Roof	
43.9 nsf	1001	
	Eloor 51	
43,6 psf	Floor 50	
43,3 psf	Floor 49	
43,0 psf	Floor 48	
42.8 psf	Floor 47	
42.5 psf	Floor 46	
42.3 psf	Floor 45	
42.0 psf	Floor 44	
41.8 psf	Floor 43	
41,5 psf	Floor 43	
41,2 psf	Floor 41	
41.0 psf	Floor 41	
40.7 psf	Floor 40	
40.4 psf	Floor 39	
40.1 psf	Floor 38	
39.8 psf	Floor 37	
39.5 psf	Floor 36	
39.2 psf	Floor 35	
38.9 psf	Floor 34	
38.6 psf	Floor 33	
38.3 psf	Floor 32	
38.0 psf	Floor 31	
37.6 pef	Floor 30	
57,6 pai	Floor 29	
37,3 psf	4	
36.8 psf	Floor 28	
26.2 pcf	Floor 27	
35.2 psi	Floor 26	
35.6 psi	Floor 25	
35.4 pst	Floor 24	
35.0 psr	Floor 23	
34.6 pst	Floor 22	
34.2 pst	Floor 21	
33.7 psf	Floor 20	
33.3 psf	Floor 19	
32.8 psf	Floor 18	
32.3 psf	Floor 17	
31.8 psf	Floor 16	
31.3 psf	Floor 15	
30,8 psf	Floor 14	
30.2 psf	Eloor 13	
29,6 psf	Floor 12	
28.9 psf	Floor 11	
28,3 psf	Eloor 10	
27.6 psf	Floor 9	
26.8 psf	Elect 9	
26.0 psf	Floor 7	
25.1 psf	Floor 6	
24.1 psf		
23.0 psf	Floor 5	
21.7 psf	Floor 4	
20.1 nef	Floor 3	
	Floor 2	
18.1 psf	4	
14.4 psf	Floor 1	27.4 psf

Figure 12: West-East Wind Pressure Diagram

26 k Flor 51 103 k Flor 54 187 k Flor 54 187 k Flor 54 187 k Flor 54 187 k Flor 54 188 k Flor 53 178 k Flor 22 178 k Flor 23 178 k Flor 23 178 k Flor 23 178 k Flor 23 168 k Flor 24 169 k	1 k		Roof
264 k 193 k 193 k 198 k 192 r6 197 k 192 r6 197 k 192 r6 197 k 192 r6 198 k 192 r6 199 k 199 r16 199 k			Floor 51
193 k 190 x 197 x 190 x 48 197 x 190 x 48 197 x 190 x 46 198 x 190 x 46 199 x 190 x 46 199 x 190 x 46 199 x 190 x 36 179 k 190 x 36 190 x 190 x 36		284 k	Fiber 51
188 k Floor 48 167 k Floor 44 167 k Floor 44 168 k Floor 44 188 k Floor 42 188 k Floor 30 189 k Floor 33 179 k Floor 33 179 k Floor 33 177 k Floor 33 178 k Floor 33 177 k Floor 33 178 k Floor 33 177 k Floor 33 178 k Floor 32 177 k Floor 33 178 k Floor 32 178 k Floor 32 178 k Floor 32 178 k Floor 22 188 k Floor 23 198 k Floor 24 198 k Floor 20 198 k Floor 16 198 k Floor 17 198 k Floor 16 198 k Floor 11 198 k Floor 12 198 k Floor 12 199 k		193 k	Fibbr 50
167 k 100 x 40 168 k Floar 45 168 k Floar 45 168 k Floar 43 183 k Floar 41 184 k Floar 42 182 k Floar 40 181 k Floar 41 182 k Floar 40 181 k Floar 40 181 k Floar 30 190 k Floar 31 170 k Floar 32 170 k Floar 31 170 k Floar 23 160 k Floar 14 160 k Floar 15 150 k Floar 16 150 k Floar 16 150 k Floar 13 150 k Floar 14 150 k		188 k	Floor 49
167 k Flor 46 188 k Flor 43 184 k Flor 43 184 k Flor 42 182 k Flor 42 182 k Flor 74 182 k Flor 72 182 k Flor 73 181 k Flor 73 182 k Flor 73 182 k Flor 73 182 k Flor 73 181 k Flor 73 181 k Flor 73 173 k Flor 73 176 k Flor 73 177 k Flor 73 178 k Flor 73 178 k Flor 72 169 k Flor 72 169 k Flor 72 169 k Flor 72 169 k Flor 71		187 k	Floor 43
166 k Hor 46 185 k Hor 43 184 k Hor 43 180 k Hor 40 180 k Hor 30 197 k Hor 38 177 k Hor 33 178 k Hor 32 177 k Hor 32 178 k Hor 32 177 k Hor 32 178 k Hor 32 169 k Hor 27 <td></td> <td>187 k</td> <td>Elpor 46</td>		187 k	Elpor 46
188 k Floor 44 185 k Floor 44 184 k Floor 43 183 k Floor 44 184 k Floor 42 182 k Floor 44 182 k Floor 44 182 k Floor 44 184 k Floor 44 185 k Floor 39 196 k Floor 39 197 k Floor 31 197 k Floor 32 198 k Floor 24 198 k Floor 23 198 k Floor 24 198 k Floor 24 198 k Floor 11 198 k Floor 12 199 k Floor 14 199 k Floor 13 199 k Floor 14 199 k Floor 14 199 k		186 k	Floor 46
188 . 199 K 184 . 199 K 182 k 199 K 182 k 199 K 180 k 199 K 190 k 199 K 190 k 199 K 197 k 199 S 198 k 199 K 199 k		185 k	Floor 45
184 k Floor 42 182 k Floor 42 182 k Floor 40 182 k Floor 30 197 k Floor 32 179 k Floor 33 179 k Floor 33 177 k Floor 33 177 k Floor 30 177 k Floor 30 177 k Floor 30 177 k Floor 32 177 k Floor 30 177 k Floor 30 177 k Floor 32 177 k Floor 32 177 k Floor 32 177 k Floor 32 177 k Floor 30 177 k Floor 32 160 k Floor 22 161 k Floor 22 162 k Floor 23 163 k Floor 10 159 k Floor 11 159 k Floor 12 169 k Floor 12 169 k Floor 11 167 k Floor 12 169 k Floor 12 169 k Floor 14 169 k Floor 4 160 k		185 k	Floor 43
189 k Hoor 41 182 k Hoor 40 182 k Hoor 30 180 k Hoor 37 179 k Hoor 33 179 k Hoor 33 177 k Hoor 32 178 k Hoor 28 177 k Hoor 28 178 k Hoor 22 169 k Hoor 23 169 k Hoor 24 169 k Hoor 23 169 k Hoor 24 169 k Hoor 12 169 k Hoor 13 169 k Hoor 14 169 k Hoor 16 169 k Hoor 13 169 k Hoor 16 169 k Hoor 16 169 k Hoor 16 169 k Hoor 17 169 k Hoor 13 169 k Hoor 14 169 k Hoor 16		184 k	Floor 43
182 k Hoor 40 181 k Hoor 39 180 k Hoor 38 170 k Hoor 36 170 k Hoor 36 170 k Hoor 37 170 k Hoor 36 170 k Hoor 37 170 k Hoor 36 177 k Hoor 37 177 k Hoor 31 176 k Hoor 32 177 k Hoor 32 178 k Hoor 32 177 k Hoor 32 178 k Hoor 32 178 k Hoor 32 169 k Hoor 23 168 k Hoor 21 168 k Hoor 12 169 k Hoor 13 169 k Hoor 14 169 k Hoor 15 169 k Hoor 16 169 k Hoor 11		183 k	Floor 42
182 k 100 × 00 181 k 100 × 39 180 k 100 × 38 179 k 100 × 36 179 k 100 × 36 178 k 100 × 32 100 k 100 × 18 100 k 100 × 18 100 k		182 k	Floor 40
161 k Hoor 38 170 k Hoor 38 170 k Hoor 35 177 k Hoor 35 177 k Hoor 33 178 k Hoor 24 178 k Hoor 25 169 k Hoor 24 169 k Hoor 22 169 k Hoor 23 168 k Hoor 23 168 k Hoor 24 168 k Hoor 11 169 k Hoor 12 169 k Hoor 13 159 k Hoor 14 169 k Hoor 15 161 k Hoor 16 169 k Hoor 16 169 k Hoor 11 169 k Hoor 12 169 k Hoor 15 161 k Hoor 16		182 k	Floor 20
160 k 100 - 30 173 k 170 - 31 173 k 170 - 33 177 k 170 - 33 177 k 170 - 33 175 k 170 - 30 175 k 170 - 23 189 k 170 - 22 168 k 170 - 23 168 k 170 - 23 169 k 170 - 23 161 k 160 - 19 162 k 170 - 21 163 k 170 - 18 159 k 170 - 18 159 k 170 - 16 163 k 170 - 11 163 k 170 - 11 164 k 170 - 11 159 k 170 - 11 160 r 100 - 12 161 k 160 - 10 162 k		181 k	Floor 39
179 k Flow 30 179 k Flow 35 178 k Flow 33 175 k Flow 30 173 k Flow 29 262 k Flow 28 262 k Flow 28 168 k Flow 25 167 k Flow 23 168 k Flow 23 168 k Flow 23 168 k Flow 24 168 k Flow 20 168 k Flow 20 168 k Flow 20 168 k Flow 20 168 k Flow 21 168 k Flow 19 159 k Flow 19 159 k Flow 19 159 k Flow 10 158 k Flow 16 159 k Flow 11 169 k Flow 13 150 k Flow 14 159 k Flow 13 150 k Flow 14 159 k Flow 13 150 k Flow 14 150 k Flow 6		180 k	Floor 37
179 k Flow 30 177 k Flow 33 176 k Flow 33 176 k Flow 33 176 k Flow 32 177 k Flow 33 176 k Flow 32 177 k Flow 32 177 k Flow 32 178 k Flow 32 178 k Flow 32 178 k Flow 32 178 k Flow 29 262 k Flow 20 166 k Flow 21 166 k Flow 21 167 k Flow 19 168 k Flow 19 159 k Flow 18 159 k Flow 16 169 k Flow 16 169 k Flow 11 169 k Flow 10 140 k Flow 7		179 k	Floor 36
178 k 170 33 177 k Flor 33 176 k Flor 32 178 k Flor 32 178 k Flor 32 178 k Flor 31 178 k Flor 32 178 k Flor 32 178 k Flor 32 178 k Flor 32 178 k Flor 29 209 k Flor 20 201 k Flor 22 178 k Flor 22 188 k Flor 23 167 k Flor 23 167 k Flor 23 168 k Flor 23 167 k Flor 23 168 k Flor 21 162 k Flor 21 163 k Flor 18 164 k Flor 16 169 k Flor 16 169 k Flor 16 169 k Flor 12 168 k Flor 12 169 k Flor 12		179 k	Floor 36
177k 170k 170k 176k Flor 33 175k Flor 31 173k Flor 30 173k Flor 30 173k Flor 20 262k Flor 28 165k Flor 25 167k Flor 26 168k Flor 27 169k Flor 28 167k Flor 21 168k Flor 22 168k Flor 21 168k Flor 11 167k Flor 11 167k Flor 11 167k Flor 11 167k Flor 11 168k Flor 11 169k Flor 12 169k Flor 13 169k Flor 13 169k Flor 14 169k Flor 12 169k Flor 2 169k Flor 2 169k Flor 3 169k Flor 1 169k Flor 7 169k Flor 7 169k Flor 7 169k Flor 7 137k Flor 3		178 k	Floor 35
176 k Floor 32 173 k Floor 32 174 k Floor 30 173 k Floor 20 269 k Floor 28 260 k Floor 28 260 k Floor 28 175 k Floor 28 169 k Floor 22 169 k Floor 22 168 k Floor 22 167 k Floor 22 168 k Floor 22 167 k Floor 20 167 k Floor 21 167 k Floor 20 167 k Floor 20 167 k Floor 20 167 k Floor 20 167 k Floor 12 168 k Floor 10 169 k Floor 10 169 k Floor 11 167 k Floor 12 168 k Floor 12 169 k Floor 14 159 k Floor 12 164 k Floor 12 165 k Floor 3 160 k Floor 3 160 k Floor 3 160 k Floor 6 137 k Floor 5 142 k Floor 2 161 k Floor 2 162 k Floor 6 137 k Fl		177 k	Floor 34
175 k Floor 31 174 k Floor 30 173 k Floor 30 173 k Floor 20 262 k Floor 27 168 k Floor 22 168 k Floor 23 167 k Floor 23 167 k Floor 24 167 k Floor 23 168 k Floor 23 167 k Floor 23 168 k Floor 23 167 k Floor 23 167 k Floor 23 167 k Floor 13 168 k Floor 17 169 k Floor 17 169 k Floor 17 169 k Floor 17 159 k Floor 17 159 k Floor 17 159 k Floor 11 159 k Floor 12 149 k Floor 13 159 k Floor 11 159 k Floor 10 147 k Floor 2 140 k Floor 2 142 k Floor 2 142 k Floor 2 143 k Floor 2 181 k Floor 2 181 k Floor 2		176 k	Floor 33
174 k Ploor 30 173 k Floor 20 262 k Floor 22 166 k Floor 23 168 k Floor 23 168 k Floor 23 167 k Floor 23 168 k Floor 23 167 k Floor 24 168 k Floor 23 167 k Floor 21 168 k Floor 21 167 k Floor 21 168 k Floor 10 167 k Floor 10 168 k Floor 10 169 k Floor 10 169 k Floor 11 167 k Floor 11 168 k Floor 11 159 k Floor 11 159 k Floor 11 159 k Floor 11 159 k Floor 12 169 k Floor 11 159 k Floor 11 140 k Floor 11 147 k Floor 6 137 k Floor 3 181 k Floor 3 181 k Floor 1		175 k	Floor 32
173 k Floor 29 259 k Floor 27 169 k Floor 25 169 k Floor 24 168 k Floor 23 168 k Floor 21 163 k Floor 21 163 k Floor 21 163 k Floor 19 159 k Floor 17 159 k Floor 16 164 k Floor 11 165 k Floor 11 167 k Floor 12 167 k Floor 11 167 k Floor 10 150 k Floor 11 150 k Floor 10 140 k Floor 10 142 k Floor 3 141 k Floor 3 181 k Floor 3 181 k Floor 3 181 k Floor 1		174 k	Floor 31
259 k Floor 28 262 k Floor 28 175 k Floor 28 169 k Floor 26 169 k Floor 22 167 k Floor 23 167 k Floor 21 165 k Floor 22 163 k Floor 21 165 k Floor 21 165 k Floor 21 165 k Floor 21 165 k Floor 20 161 k Floor 19 150 k Floor 18 150 k Floor 16 149 k Floor 11 159 k Floor 12 149 k Floor 11 147 k Floor 10 147 k Floor 7 137 k Floor 6 137 k Floor 3 181 k Floor 3 181 k Floor 1		173 k	Floor 30
Hor 28 175 k Flor 27 169 k Flor 28 168 k Flor 23 167 k Flor 23 168 k Flor 22 163 k Flor 20 164 k Flor 20 165 k Flor 19 167 k Flor 10 168 k Flor 11 169 k Flor 11 159 k Flor 11 159 k Flor 11 159 k Flor 11 159 k Flor 11 149 k Flor 11 149 k Flor 11 147 k Flor 7 137 k Flor 7 138 k Flor 7 138 k Flor 7 138 k Flor 7		259 k	Flbbr 29
Flor 27 189 k Flor 28 169 k Flor 22 167 k Flor 23 167 k Flor 23 166 k Flor 21 165 k Flor 20 161 k Flor 19 161 k Flor 10 162 k Flor 10 163 k Flor 11 164 k Flor 12 163 k Flor 11 164 k Flor 11 167 k Flor 11 168 k Flor 11 169 k Flor 11 169 k Flor 11 169 k Flor 11 169 k Flor 1 175 k Flor 1 169 k Flor 1 177 k Flor 1 178 k Flor 1 179 k Flor 1 179 k Flor 1 170 f 137 k 170 f 137 k 181 k Flor 2 191 k Flor 1		262 k	Floor 28
169 k Floor 28 169 k Floor 25 167 k Floor 23 167 k Floor 23 167 k Floor 23 167 k Floor 22 168 k Floor 22 163 k Floor 21 163 k Floor 21 163 k Floor 19 161 k Floor 19 162 k Floor 18 163 k Floor 16 169 k Floor 16 159 k Floor 15 159 k Floor 11 159 k Floor 11 159 k Floor 11 149 k Floor 11 149 k Floor 10 142 k Floor 2 142 k Floor 3 142 k Floor 4 142 k Floor 5 142 k Floor 4 143 k Floor 2 181 k Floor 1		202 K	Floor 27
168 k Floor 25 167 k Floor 24 165 k Floor 23 164 k Floor 21 163 k Floor 21 164 k Floor 21 165 k Floor 21 167 k Floor 20 168 k Floor 19 167 k Floor 19 168 k Floor 17 159 k Floor 17 157 k Floor 16 159 k Floor 11 158 k Floor 13 150 k Floor 11 159 k Floor 11 149 k Floor 11 147 k Floor 1 147 k Floor 3 140 k Floor 5 142 k Floor 6 137 k Floor 3 142 k Floor 3 143 k Floor 3 143 k Floor 2 143 k Floor 1 137 k Floor 1 137 k Floor 1 137 k Floor 1 137 k Floor 1 13739561 Fl-k 9336 k		169 k	Floor 26
167 k Floor 24 167 k Floor 23 166 k Floor 23 166 k Floor 22 163 k Floor 21 163 k Floor 20 161 k Floor 19 162 k Floor 19 161 k Floor 11 162 k Floor 16 169 k Floor 16 169 k Floor 15 159 k Floor 11 149 k Floor 11 147 k Floor 10 145 k Floor 6 137 k Floor 6 137 k Floor 6 142 k Floor 3 181 k Floor 2		169 k	Floor 25
107 A Flor 23 165 k Flor 22 163 k Flor 21 163 k Flor 20 161 k Flor 19 162 k Flor 19 163 k Flor 18 159 k Flor 16 158 k Flor 16 158 k Flor 17 158 k Flor 16 149 k Flor 13 150 k Flor 13 150 k Flor 12 149 k Flor 10 145 k Flor 7 137 k Flor 6 137 k Flor 6 137 k Flor 7 142 k Flor 6 137 k Flor 7 142 k Flor 7 137 k Flor 7 143 k Flor 7 181 k Flor 1		168 K	Floor 24
103 k Floar 22 163 k Floar 21 163 k Floar 20 161 k Floar 19 152 k Floar 19 153 k Floar 18 156 k Floar 17 157 k Floar 16 157 k Floar 16 157 k Floar 11 158 k Floar 13 159 k Floar 13 159 k Floar 11 149 k Floar 11 149 k Floar 10 144 k Floar 10 145 k Floar 6 137 k Floar 5 142 k Floar 5 142 k Floar 4 143 k Floar 3 144 k Floar 5 142 k Floar 6 137 k Floar 7 143 k Floar 3 181 k Floar 1		165 k	Floor 23
163 k Floor 21 162 k Floor 20 161 k Floor 19 159 k Floor 18 158 k Floor 17 158 k Floor 16 158 k Floor 16 159 k Floor 16 159 k Floor 16 159 k Floor 16 159 k Floor 11 159 k Floor 13 150 k Floor 11 149 k Floor 10 145 k Floor 10 145 k Floor 7 140 k Floor 7 137 k Floor 6 137 k Floor 7 142 k Floor 3 143 k Floor 2 181 k Floor 1		165 K	Floor 22
163 k Flor 20 161 k Flor 19 161 k Flor 19 159 k Flor 18 158 k Flor 17 157 k Flor 16 149 k Flor 15 154 k Flor 14 159 k Flor 14 159 k Flor 12 149 k Flor 12 149 k Flor 12 149 k Flor 10 145 k Flor 9 142 k Flor 7 137 k Flor 6 137 k Flor 6 137 k Flor 3 142 k Flor 7 137 k Flor 7 142 k Flor 7 137 k Flor 7 148 k Flor 7 147 k Flor 7 137 k Flor 7 138 k Flor 7 148 k Flor 7 181 k Flor 7 181 k <		162 4	Floor 21
161 k Floor 19 159 k Floor 18 159 k Floor 17 157 k Floor 16 149 k Floor 15 154 k Floor 13 159 k Floor 14 159 k Floor 12 164 k Floor 11 167 k Floor 12 168 k Floor 12 169 k Floor 10 149 k Floor 10 147 k Floor 10 145 k Floor 7 147 k Floor 6 147 k Floor 7 148 k Floor 7 147 k Floor 7 148 k Floor 7 137 k Floor 5 142 k Floor 3 142 k Floor 3 143 k Floor 3 143 k Floor 2 181 k Floor 1		163 k	Floor 20
ISB k Floor 18 158 k Floor 17 157 k Floor 18 149 k Floor 15 154 k Floor 14 159 k Floor 13 150 k Floor 11 149 k Floor 11 150 k Floor 11 149 k Floor 10 144 k Floor 10 145 k Floor 7 140 k Floor 7 137 k Floor 5 137 k Floor 5 142 k Floor 3 143 k Floor 3 181 k Floor 1		162 k	Floor 19
150 k Flor 17 157 k Flor 18 149 k Flor 15 159 k Flor 14 159 k Flor 13 150 k Flor 12 149 k Flor 11 150 k Flor 10 145 k Flor 7 142 k Flor 7 137 k Flor 5 137 k Flor 3 143 k Flor 3 143 k Flor 1 143 k Flor 1		159 k	Floor 18
100 k Floor 16 157 k Floor 15 154 k Floor 14 159 k Floor 13 150 k Floor 12 149 k Floor 12 149 k Floor 12 149 k Floor 10 145 k Floor 10 145 k Floor 7 142 k Floor 6 137 k Floor 6 137 k Floor 3 142 k Floor 3 143 k Floor 1 143 k Floor 1 137 k Floor 5 142 k Floor 6 137 k Floor 7 137 k Floor 1 143 k Floor 1 143 k Floor 1		158 k	Floor 17
149 k Floor 15 154 k Floor 14 159 k Floor 13 150 k Floor 12 149 k Floor 11 149 k Floor 10 147 k Floor 10 145 k Floor 9 142 k Floor 7 140 k Floor 7 137 k Floor 6 137 k Floor 5 142 k Floor 3 143 k Floor 3 181 k Floor 1		157 k	Floor 16
Flaor 14 154 k Flaor 13 159 k Flaor 13 150 k Flaor 12 149 k Flaor 11 147 k Flaor 10 145 k Flaor 9 145 k Flaor 7 142 k Flaor 7 137 k Flaor 6 137 k Flaor 5 142 k Flaor 7 137 k Flaor 7 138 k Flaor 1 143 k Flaor 1 143 k Flaor 1 137 k Flaor 5 142 k Flaor 1		149 k	Floor 15
159 k Floor 13 150 k Floor 12 149 k Floor 11 147 k Floor 10 145 k Floor 9 142 k Floor 7 137 k Floor 6 137 k Floor 5 142 k Floor 7 137 k Floor 6 137 k Floor 7 143 k Floor 7 143 k Floor 1 Floor 1		154 k	Floor 14
150 k Floor 12 149 k Floor 11 147 k Floor 10 145 k Floor 9 145 k Floor 7 142 k Floor 6 137 k Floor 5 142 k Floor 4 143 k Floor 3 148 k Floor 1 143 k Floor 1 181 k Floor 1		150 k	Floor 13
149 k Floor 11 147 k Floor 10 145 k Floor 9 142 k Floor 7 140 k Floor 6 137 k Floor 5 137 k Floor 3 143 k Floor 3 181 k Floor 1 3739561 FLK 9336 k		150 k	Floor 12
147 k Floor 10 145 k Floor 9 142 k Floor 8 140 k Floor 7 137 k Floor 6 137 k Floor 5 137 k Floor 3 143 k Floor 2 181 k Floor 1 3739561 Fi-k 9336 k		149 k	Floor 11
145 k Floor 9 145 k Floor 8 142 k Floor 7 137 k Floor 6 137 k Floor 5 137 k Floor 4 143 k Floor 3 181 k Floor 1 3739561 Fi-k 9336 k		147 k	Floor 10
142 k Floor 8 140 k Floor 7 140 k Floor 6 137 k Floor 5 137 k Floor 4 142 k Floor 3 143 k Floor 2 181 k Floor 1 3739561 Fi-k 9336 k		145 k	Floor 9
Idor Floor 7 140 k Floor 6 137 k Floor 5 137 k Floor 4 142 k Floor 3 143 k Floor 2 181 k Floor 1 3739561 Fi-k 9336 k		142 k	Floor 8
137 k Floor 6 137 k Floor 5 137 k Floor 4 142 k Floor 3 143 k Floor 2 181 k Floor 1 3739561 Fi-k 9336 k		140 k	Floor 7
Floor 5 137 k 137 k 142 k 143 k 143 k Floor 3 181 k Floor 1 3739561 Fi-k 9336 k		137 k	Floor 6
Floor 4 142 k 143 k 143 k Floor 2 181 k Floor 1 3739561 Fi-k 9336 k		137 k	Floor 5
143 k Floor 3 143 k Floor 2 181 k Floor 1 13739561 Fik 9336 k		142 k	Floor 4
Floor 2 181 k Floor 1 181 k 9336 k		1/2	Floor 3
Floor 1 3739561 Fi-k 9336 k		181 k	Floor 2
3739561 Ft-k 9336 k			Floor 1
9336 k			0700504 54 1
9336 k			3739561 РТ-К
			9336 k

Figure 13: West-East Wind Force Diagram

_22.9 psf		
	Boof	
44.5 psf		
	Floor 51	
44.3 psf	Floor 50	
44.0 psf	Floor 49	
43.7 psf	Floor 48	
43,5 psf	Floor 47	
43.2 pst	Floor 46	
43.0psi	Floor 45	
42.7 psi	Floor 44	
42.4 psi	Floor 43	
42,2 psi	Floor 42	
41.6 psf	Floor 41	
41.3 psf	Floor 40	
41.0 psf	Floor 39	
40.8 psf	Floor 38	
40.5 psf	Floor 37	
40.2 psf	Floor 36	
39.9 psf	Floor 35	
39.5 psf	Floor 34	
39.2 psf	Floor 33	
38.9 psf	Floor 32	
38,6 psf	Floor 31	
38.2 psf	Floor 30	
07.0 mmf	Floor 29	
37.9 psi	Elect 28	
37.3 psf	Floor 27	
36.8 psf	Floor 26	
_36,4 psf	Floor 25	
36.0 psf	Floor 24	
35.6 psf	Floor 23	
35.1 psf	Floor 22	
34,7 psf	Floor 21	
34,3 psf	Floor 20	
33,8 psf	Floor 19	
33.3 psf	Floor 18	
32,8 psf	Floor 17	
32,3 pst	Floor 16	
31,8 pst	Floor 15	
31.2 DSI	Floor 14	
30.1 psf	Floor 13	
30.1 psi	Floor 12	
28.7 pef	Floor 11	
28 0 psf	Floor 10	
27 2 psf	Floor 9	
26.4 psf	Floor 8	
25,5 psf	Floor 7	
24.5 psf	Floor 6	
23,4 psf	Floor 5	
22,1 psf	Floor 4	
20.4 psf	Floor 3	
19.2 maf	Floor 2	
14.6 pef	Elocr 1	24.8 nof

Figure 14: North-South Wind Pressure Diagram

Barben | Bonfanti | Perez IPD/BIM Structural Option Dr. Andres Lepage 10/05/2009

(<u> </u>		Roof
	204 k	Floor 51
	224 K	Floor 50
	152 k	Floor 49
	148 K	Floor 48
	147 k	Floor 47
	147 K	Floor 46
	146 K	Floor 45
	145 K	Floor 44
	145 k	Floor 43
	144 k	Floor 42
	143 k	Floor 41
	143 k	Floor 40
	142 k	Floor 39
	142 k	Floor 38
	141 k	Floor 37
	140 k	Floor 36
	140 k	Floor 35
	139 k	Floor 34
	138 k	Floor 33
	138 k	Floor 32
	137 k	Floor 31
	136 k	Floor 30
	203 k	Floor 29
	205 k	Floor 28
	137 k	Floor 27
	132 k	Floor 26
	131 k	Floor 25
	130 k	Floor 24
	129 k	Floor 23
	129 k	Floor 22
	128 k	Floor 21
	127 k	Floor 20
	126 k	Floor 19
	124 k	Floor 18
	123 k	Floor 17
	122 k	Floor 16
	116 k	Floor 15
	120 k	Floor 14
	124 k	Floor 13
	117 k	Floor 12
	116 k	Floor 11
	114 k	Floor 10
	112 k	Floor 9
	111 k	Floor 8
	109 k	Floor 7
	106 k	Floor 6
	106 k	Floor 5
	110 k	Floor 4
	110 k	Floor 3
	125 k	Floor 2
		Floor 1
		1381094 Ft-k
		7438 k

Seismic Loads

To design for seismic loading conditions on the New York Times Headquarters, Thornton Tomasetti used the New York City Building Code as a basis for calculation. To convert the classification to that used in ASCE 7-05, the assumed bearing capacities and N values were compared to ASCE values. For example, the site had 40 ton per square foot rock, which is classified as Class 2-65 Medium Hard Rock in the NYC Building Code. In ASCE 7-05, Site Class A is designated as Hard Rock and Site Class B is designated as Rock. To be conservative, Class 2-65 rock was equated with Site Class B in ASCE. However, in one corner of the site the rock has a bearing capacity of only 8 tons per square foot, Class 4-65. This lower bearing capacity better equated with Site Class C in ASCE 7-05. Therefore, Site Class C was used in the analysis to be conservative.

Calculations of the design spectral response acceleration, using the USGS Ground Motion Parameter Tool and ASCE 7-05, yielded S_{DS} and S_{D1} values that corresponded to Site Class B using Tables 11.6-1 and 11.6-2, which are less conservative than those assumed from Site Class C. Therefore, the remaining seismic values were calculated using Site Class C. The base shear was determined to be 1834 kips, calculated from the effective seismic weight, including the assumed dead loads and partition loads from Tables 1, 3, and 8. The lateral seismic forces at each level increase with elevation, and range from 1.1 kips to 94 kips, as shown in Figure 13 below. The period of the building due to seismic loads was determined to be 2.9 seconds. The Response Modification Coefficient (R) used in calculations was assumed as 3.25, based on ordinary steel concentrically braced frames. This number is a bit conservative, as there is a distribution of different braced frames throughout the tower. In addition, the height of the building was increased slightly to include seismic effects above the roof level, as a contribution of the extended façade. Refer to Tables 26-29 and Figures 27 and 28 of Appendix E for calculation details.

Due to the height and location of the New York Times building, it was expected that the lateral loading due to wind pressure would control over seismic loadings. After comparing the results of the two loading conditions, it was clearly evident that this was the case.

Seismic Factors S	umn	nary
Site Class	=	С
Occupancy Category	=	III
Importance Factor, I	=	1.25
Latitude	=	40.756
Longitude	=	-73.990
F _a	=	1.20
$\mathbf{F}_{\mathbf{v}}$	=	1.70
$\mathbf{S}_{\mathbf{S}}$	=	0.363g
S ₁	=	0.070g
Seismic Design Cat.	=	В

.9 K	Roof
	Elect 51
85.4 k	Floor 51
79.0 k	Floer 49
75.9 k	Floer 48
72.9 k	Elocr 47
70.0 k	Flocr 46
67.1 k	Flocr 45
64.3 k	Flocr 44
61.5 k	Floor 43
58.9 k	Floor 42
56.2 k	Floor 41
53.6 k	Floor 40
51.1 k	Floor 39
48.7 k	Floor 38
16.3 k	Floor 37
44.0 k	Floor 36
41.7 k	Floor 35
39.5 k	Floor 34
37.3 k	Floor 33
35.2 k	Floor 32
33.2 k	Floor 31
31.2 k	Floor 30
29.3 k	Floor 29
28.8 K	Flocr 28
24.0 k	Floor 27
22.2 k	Floor 26
20.6 k	Flocr 25
19.0 k	Flocr 24
17.5 k	Flocr 23
16,1 k	Floer 22
14.0 k	Floor 21
13.5 k	Floor 20
12.2 5	Floor 19
11.0 k	Floor 18
9.90 k 🔍	Floor 17
8.84 k	Floer 16
7.84 k	Floor 15
6.87 k	Flocr 14
6.11 k	Floor 13
5.19 k	Floor 12
4.43 K	Floer 11
3.73 k	Flocr 10
3.09 k	Floor 9
2.51 k	Floor 8
1.99 k	Floor 7
1.53 k	Floor 6
1.13 k	Floor 5
3.42 k	Floor 4
217 k	Floor 3
1446	Elogr 2
1.14 K	FIOUL 2
0.441 k	Floor 1
area I R	• result E
	V = 1834 k

Miscellaneous Loads

Other miscellaneous loads were considered for the existing design of the New York Times Building and will need to be addressed in the future for this fifth year capstone project. The first condition which needs to be addressed is the thermal loading on the structure of the building, which causes deflections throughout the structure. Thermal differentials had to be considered due to interior steel members being maintained at room temperature and exposed steel members undergoing extreme temperature changes. Thornton Tomasetti designed the structure using a Δ T of -10 to 130 °F after consulting historical temperature data for New York City and the National Building Code of Canada. The Canadian Code was used because it provides descriptive guidelines for thermal design. Due to the temperature deformation of the exterior columns and not the interior ones, differential deflection at upper floors exceeded L/100. To combat these thermal differentials, the outrigger trusses were utilized to even out the differential deflections. Thermal trusses were added along the east and west face at the twenty eighth and fifty first floors. These trusses improved thermal deflections to L/300. The location of these thermal trusses are shown in green in Figure 17 below. In addition to thermal loadings, the design of the New York Times Buildings considered loadings due to impact and blasts. This information is confidential and will not be disclosed by the owner or the design team.

Please note that these loadings are merely mentioned in this report and were not analyzed. However, these loadings, especially those due to thermal fluctuations, must be considered and will have to be analyzed in the future.

Figure 17: Thermal Truss, in green, located at the 28th and 51st floor, courtesy of Thornton Tomasetti

TYPICAL FLOOR FRAMING SPOT CHECKS

Figure 15 shows the typical bay that was analyzed. Typical interior beams in green, W18x35 [40] c=1.5", and typical edge beams in blue, W12x19 [3], frame into the typical girder in purple, W18x40 [30] c=3/4", which in turn frames into built-up edge box columns or built-up core columns.

Metal Decking

It was determined from Thornton Tomasetti's guidance and the architectural plans that the typical office bay metal decking chosen was a 20 gage, 3 inch deep deck with yield strength of 40 ksi, with 2.5 inch of concrete topping. The following table was taken from Vulcraft page 48 for a 3 inch deep deck:

(
Total		5	SDI Max. U	nshored								Superir	nposed L	ive Load	I, PSF				
Slab	Deck		Clear	Span		Clear Span (ftin.)													
Depth	Туре	1 Span	2 Span	3 Span	7'-0	7'-6	8, 0	8'-6	9'-0	9'-6	10°-0	10'-6	11'-0	11'-6	12'-0	12'-6	13'-0	13'-6	14'-0
	3VLI22	7'-8	9'-7	9'-7	216	195	149	133	120	109	99	90	83	76	70	64	59	54	50
5°	3VLI21	8'-11	11'-3	11'-4	230	206	187	170	128	116	106	96	88	81	74	68	63	58	54
	3VLI20	9'-6	11'-11	12'-4	241	216	196	178	163	150	111	101	93	85	78	72	66	61	57
(t=2")	3VLI19	10'-8	13'-2	13'-7	265	237	214	194	178	163	151	140	102	94	86	79	73	67	62
	3VLI18	11'-8	14'-1	14'-6	289	261	238	218	201	186	173	161	151	142	106	98	92	86	80
44 PSF	3VLI17	12°-7	14'-11	15'-5	309	278	253	231	212	196	182	170	159	150	141	133	97	91	85
	3VLI16	13'-4	15'-8	15'-11	327	294	267	243	223	206	191	178	167	156	147	139	132	96	89
	3VLI22	7'-0	8'-9	8'-9	247	190	170	152	137	124	113	103	94	87	80	73	67	62	57
5 1/2"	3VLI21	8'-4	10'-4	10'-4	262	235	213	162	146	133	120	110	101	92	85	78	72	66	61
	3VLI20	9'-0	11'-5	11'-9	275	247	223	203	186	140	127	116	106	97	89	82	76	70	65
(t=2 1/2")	3VLI19	10-1	12-1	13-0	302	270	244	222	203	186	172	128	117	107	98	90	83	77	71
	3VLI18	11'-1	13'-5	13'-11	330	298	271	248	229	212	197	184	173	130	121	112	105	- 98	92
50 PSF	3VLI17	11'-11	14'-3	14'-9	352	317	288	263	242	224	208	194	182	171	128	119	111	104	97
	3VLI16	12'-8	15'-0	15'-5	373	335	304	277	255	235	218	203	190	178	168	159	117	109	102

(N=9) NORMAL WEIGHT CONCRETE (145 PCF)

In Figure 16 in red, the maximum un-shored clear span for three spans is 11 feet and 9 inches. For a typical bay between beams the clear span is 9 feet, therefore the deck meets the clear span criteria. In addition to the span, the superimposed live load is 70 psf live load for office and 40 psf, dead load for office minus the self weight of the composite deck system (see Table 1: Typical Tower Floor Dead Load for loading). With the superimposed live load of 110 psf being less than 186 psf, the capacity of the deck in yellow, the deck meets all criteria and has the necessary strength needed.

Figure 19: 3" Vulcraft Metal Deck Loading Table

Barben | Bonfanti | Perez IPD/BIM Structural Option Dr. Andres Lepage 10/05/2009

Typical Composite Beam

Typical composite beam sizes are W18x35 [40] with a camber of 1.5" and W12x19 [3]. Figure 15 displays these beam locations; beams are spaced 10 feet on center and span 40 feet for the W18 and 5 feet and 4 inches for the W12. These members were checked for flexure strength, shear strength, total live load deflection, and construction dead load. The design calculations are included at the end of this report in Appendix B.

After analyzing the typical composite beams, it was found that the W18 and W12 meet all strength and serviceability requirements. It was also found the calculated shear and flexural forces in the beams were fifteen percent less than designed values. This is due to the fifteen percent increase Thornton Tomasetti added in to account for potential changes in office space and expansion of light MEP systems. For the W18 beams, the minimum partial composite strength for a neutral axis of one inch meets the requirements, but the number of shear studs is less than the design number of shear studs. Similarly, the minimum partial composite strength of the W12 beams for a neutral axis of half an inch meets the requirements, but the number of shear studs is greater in the thesis check than the design (Thornton Tomasetti's) number of shear studs. In the case of the W18, the reason to increase shear studs could be to allow for more flexural strength and ease of constructability by placing one shear stud every foot as oppose to uneven shear stud spacing. In the case of the W12, the location of neutral axis is smaller than the assumed calculated neutral axis, which causes the number of shear studs to decrease, therefore verifying Thornton Tomasetti's results.

Typical Composite Girder

Typical composite girder size is W18x40 [30] c=3/4". Figure 15 displays the location of the girder, which spans 30 feet. This girder was checked for flexure strength, shear strength, total live load deflection, and construction dead load. The design calculations are included at the end of this report in Appendix B.

After analyzing the typical composite girder, it was found that the W18 meet all strength and serviceability requirements. As with the typical composite beams, the calculated shear and flexural forces in the girder were thirteen percent less than designed (Thornton Tomasetti's) values. This could be due to the fifteen percent increase Thornton Tomasetti added in for changes of office space and expansion of light MEP systems for the composite beams. For the W18 girder the minimum partial composite strength for a neutral axis of one and a half inches meets the requirements, but the number of shear studs is more than the design number of shear studs. As with the W12, the location of neutral axis is smaller than the assumed calculated neutral axis, which causes the number of shear studs to decrease therefore verifying Thornton Tomasetti's results.

Typical Column

Typical built-up box columns used in the analysis are 30" by 30" with 4 inch flange plates and 7 inch web plates. Column load takedowns are included at the end of this report in Appendix C. In Table 16 in Appendix C, the column load takedowns include live load reduction and in Table 17 in Appendix C, the column load takedowns include unreduced live loads. The unbraced lengths of the column were determined by floor to floor heights and were assumed to be pinned at the top and bottom. At this time it is unknown if office space live load are unreduced or partially reduced; further investigation is required. The design calculations for the built-up box columns are included at the end of this report in Appendix C.

After analyzing the typical built-up box column at level 6, it was found that it meets all strength and serviceability requirements. The flexural buckling of the built-up box column controls over flexural-torsional buckling of the column, therefore only elastic flexural buckling was checked. In addition to the column meeting the requirements, it was found the column's capacity is four times greater than a factored applied load with reduced live load and is two times greater than a factored applied load. This large capacity is due to the column's large cross-sectional area which could be a result of blast design in addition to the columns contributing to the tower's lateral system. As stated before, live load reduction can affect the size of the columns. In the future, the columns will need to be analyzes for lateral loads.

ANALYSIS & CONCLUSIONS

The gravity system was analyzed for dead and live loads as a confirmation of the loads used in design. The check on the beams yielded a different number of shear studs, possibly because the designers wanted to use even stud spacing or preferred a different level of composite action. The difference in results could also be due to the assumed stud strengths. In addition, inclusion of blast and progressive collapse design could influence these results. Gravity checks done for the columns showed that the sizes were larger than necessary, most likely because the columns were also used in the lateral system to counteract the overturning moment.

Unfactored seismic and wind forces, as shown by the diagrams in Figures 10, 12, and 13, were analyzed to determine the controlling lateral loading condition. Wind base shear is approximately five times larger than seismic base shear, and wind point loads at each floor are much greater than those induced by the design earthquake loads. This clearly indicates that wind loads control as the design lateral loading condition. In future technical reports, the lateral system will be analyzed in more detail as a check of the bracing and member sizes.

There are several other unique structural challenges that arose during design, but were outside the scope of this report. First, thermal loads were factored into the design due to the exposed structural elements and the large amount of glass in the façade. The building has the potential to expand and contract in extreme temperatures, and Thornton Tomasetti designed members to resist forces induced by these movements. The team utilized the Canadian National Building Code, which has more specific directions for temperature loads, to include thermal effects in their design. This undoubtedly had an impact on design loads, and must be considered in further detail.

In addition, there are large 20 foot cantilevers that create the cruciform shape in plan of the tower, which were not analyzed for loads and deflections in this technical report. However, they presented a unique challenge to the designers and must also be analyzed in the future. The effects of the mast and roof screen walls were also not included in full detail in this report. Finally, the connections and subway system adjacent to the building should be studied to examine how it influenced the design of the structure and foundations.

Figure 22: Typical N/S Outrigger Section (28th Floor)

APPENDIX B: TYPICAL BAY SPOT CHECKS

Typical Beam (W18x35 [40] c=1.5") Material Properties:					
Concrete	$\mathbf{f}_{c} =$	41	csi		
Beam	$F_v =$	50 1	ksi		
	$F_u =$	65 1	csi		
Spacing:	10.000	ft			
Span:	40.000	ft			
Loade					
Dead Loads:					
Slab:	0.053	ksf			
Beam Weight:	0.004	ksf			
MEP/Ceiling:	0.025	ksf			
Live Loads:					
Non-Reduced:	0.070	ksf			
Total dead load:	0.815	klf			
Total live load:	0.700	klf			
1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		5.6209.E30			
Const. dead load (unshored):	0.565	klf			
Const. live load (unshored):	0.200	klf			
$w_u = 1.2D + 1.6L =$	2.098	klf			
$V_u = w_u l/2$	41.960	k			
$M_u = w_u l^2/8$	419.600	ftk			
b _{eff} =	120.000	in			
Assume a=	1.000	in			
$Y_2 = t_{slab} - a/2 =$	5.000	in			
Check I:					
Δ=l/240+camber=	3.500	in			
$I = 5w - \frac{1^4}{(384EA)}$	320 631	in ⁴	~	510.000 in	OK
req 5 WCDL1 ((334LB)-	520.051			510,000 m	OK
Check member strength as un-shored:					
$w_{u(unshored)} = 1.2D + 1.6L =$	0.998	klf			
$M_{u(unshored)} = w_u l^2/8 =$	199.600	ftk	<	249.000 ftk	OK
u(utsiloicu) u					
$\Sigma Q_n =$	260.000	k			
Check member strength:					
$\phi M_n =$	435.000	ftk	>	419.600 ftk	OK
φV _n =	159.000	k	>	41.960 k	OK
Check a:				1,000,000	02000
$a=\Sigma Qn/0.85 f_c b_{eff}$	0.637	in	<	1.000 in	OK
Clearly A					
Check Δ_{LL} :					
Δ _{LL} =I/360=	1.333	ın			
$\Delta_{LL}=5w_{LL}I^{4}/(384EI_{LB})=$	0.119	in	<	1.333 in	OK
Check studs:					
Q _n =	17.200	kips/stud		Table 3-21	
# of studs= $\Sigma Q_n/Q_n$ =	15.116	therefore use	16.000	studs/side	
Figure 23	: Typical (Composite W	L8 Analy	ysis	

Typical Beam (W12x19 [3] c=0") Material Properties:					
Concrete	$f_c =$	4 k	si		
Beam	$F_v =$	50 k	si		
	$F_u =$	65 k	si		
Spacing:	10.000	ft			
Span:	5.333	ft			
Loads.					
Dead Loads:					
Slab:	0.053	ksf			
Beam Weight:	0.002	ksf			
MEP/Ceiling:	0.025	ksf			
Live Loads:					
Non-Reduced:	0.070	ksf			
Total dead load:	0.799	klf			
Total live load:	0.700	klf			
		110			
Const. dead load (unshored):	0,549	klf			
Const. live load (unshored):	0.200	KIT			
w = 1.2D + 1.6I -	2 070	klf			
$W_u = 1.2D + 1.0L = 0.000$	5.543	kii			
$v_{u} - w_{u} l/2$	5.545	ĸ			
$M_u = w_u l^2/8$	7.391	ftk			
h -	16 000	122			
0 _{en} =	16.000	in			
A ssume a=	0.500	in			
$V_{-}=t_{+}=a/2=$	5 250	in			
12 Islab ar 2	5.250	m			
Check I:		1			
$\Delta = 1/240 + camber =$	0,267	in			
$I_{=5w_{cm}}l^{4}/(384E\Lambda)=$	1 292	in ⁴	<	96 300 in ⁴	OK
req of CDL (Contemp	1.222			201200	on
Check member strength as un-shored:					
wu(unshored)=1.2D+1.6L=	0.979	klf			
Muumsharati=wl ² /8=	3,480	ftk	<	249.000 ftk	OK
u(unshored)					
$\Sigma Q_n =$	69,700	k			
0.0					
Check member strength:					
φ M _n =	144.000	ftk	>	7.391 ftk	OK
φV _n =	85.700	k	>	5.543 k	ОК
Check a:					
$a=\Sigma Qn/0.85 f_{c}b_{eff}=$	0.107	in	<	0.500 in	OK
Check Δ_{LL} :					
Δ _{LL} =I/360=	0.178	in			
$\Delta_{11} = 5 W_{11} I^4 / (384 E I_{10}) =$	0.0002	in	<	0.178 in	OK
Check studs:					
O_==	17.200	kips/stud		Table 3-21	
# of studs= $\Sigma \Omega / \Omega$ =	4.052	therefore use	5.000) studs/side	
	4,002	Liererore use	2.000		

Figure 24: Typical Composite W12 Analysis

Typical Girder (W18x40 [30] c=3/4") Material Properties:					
Concrete	$f_{c} =$	8 134	ksi 🛛		
Beam	$F_v =$	50) ksi		
	F _u =	6	5 ksi		
Span:	30,000	ft			
Loads:					
Dead Loads:					
P_{W18x35} :	16.300	k			
P _{W12x19} :	2.131	k			
Beam Weight:	0.040	klf			
Live Loads:					
P_{W18x35} :	14.000	k			
P _{W12x19} :	1.867	k			
Total dead load (Pu):	18.431	k			
Total dead load (wa):	0.040	klf			
Total live load(Pu):	15.867	k			
Const. dead load (unshored):	12.764	k			
Const. dead load (unshored):	0.040	klf			
Const. live load (unshored):	0.533	k			
P _u =1.2D+1.6L=	47,503	k			
$w_u = 1.2D + 1.6L =$	0.048	klf			
$V_u = w_u l/2 + P_u =$	48.223	k			
$M_u = w_u l^2 / 8 + P_u l / 3$	480.435	ftk			
b_{eff}	90.000	in			
Assume a=	1,500	in			
$Y_2 = t_{slab} - a/2 =$	4.750	in			
Check I _{req} :					
Δ=l/240+camber=	2.250	in			
$I_{req} = 5w_{DL}l^4/(384E\Delta) + P_{DL}l^3/(28E\Delta) -$	337.126	in ⁴	<	612.000 in ⁴	OK
Check member strength as un-shored:					
$P_{u(unshored)} = 1.2D + 1.6L =$	16.170	k			
wu(unshored)=1.2D+1.6L=	0.048	klf			
$M_{u(unshored)} \!\!=\!\! w_u l^2 \!/ \! 8 \!\!+ \! P_u l / \! 3 \!\!=$	167.101	ftk	<	294.000 ftk	OK
ΣQ,=	351.000	k			
Check member strength:					
φM _n =	516,500	ftk	>	480.435 ftk	OK
φV _n =	159.000	k	>	48.223 k	OK
Cheek a:					
$a=\Sigma Qn/0.85 f_e b_{eff}=$	1.147	in	<	1.500 in	OK
Check Δ_{LL} :					
Δ _{LL} =I/360=	1.000	in			
$\Delta_{LL} = P_{LL} ^3 / (28 E I_{LB}) =$	0.680	in	<	1.000 in	ОК
Check studs:					
0.=	17.200	kips/stud		Table 3-21	
# of studs= $\Sigma Q_n/Q_n$ =	20,407	therefore use	21.000	studs/side	

Figure 25: Typical Composite Girder

APPENDIX C: TYPICAL COLUMN CHECKS

COLUMN A4	OLUMN A4 (Located in Office Area) LL Reduction														
Story level	Column Below Level	Tributary Area (ft ²)	Live Load Influence Area (ft ²)	Live Load Reduction Factor	Dead Load (kips)	Wall Load (kips)	Roof Live Load (kips)	Snow Load (kips)	Floor Live Load (kips)	Column Load 1.4D (kips)	Column Load 1.2D+1.6L+.5(Lr or S) (kips)	Column Load 1.2D+1.6(Lr or S)+L (kips)	Column Load 1.2D+L+0.5(Lr or S) (kips)	Column Load 1.2D+L+0.2S (kips)	Column Design Load
52 Roof	1	765	0	1.00	76.48	28.41	76.48	13.38	}	146.85	164.11	248.25	164.11	128.55	248.25
51 Mech	2	1530	2730	1.00	147.61	38.97			95.61	261.22	415.11	441.88	357.75	322.19	441.88
50	3	2295	5459	0.45	218.75	44.69			119.86	368.81	546.14	558.36	474.23	438.66	558.36
49	4	3059	8189	0.42	289.88	50.05			142.12	475.90	673.55	672.41	588.28	552.71	673.55
48	5	3824	10919	0.40	361.01	55.42			163.53	582.99	799.60	785.62	701.48	665.92	799.60
47	6	4589	13648	0.40	432.14	60.78			184.95	690.08	925.66	898.82	814.69	779.13	925,66
46	7	5354	16378	0.40	503,27	66.14			206.37	797.17	1051.72	1012.03	927.90	892.33	1051.72
45	8	6119	19108	0.40	574.40	71.50			227.78	904.20	11//,//	1125.24	1041.11	1005.54	11//.//
44	10	0884	21838	0.40	716.66	/0.8/			249,20	1011.52	1303.83	1258.45	1154.51	1118.75	1303.83
43	10	/048	24307	0.40	710.00	82.23			270.01	1118,44	1429.89	1351.05	1207.52	1231.95	1429.89
42	12	0178	30027	0.40	858.02	07.59			313.44	1332.63	1682.00	1404.80	1380.75	1458 37	1682.00
40	13	9943	32756	0.40	930.05	98.32			334.86	1439 71	1808.06	1691.27	1607.14	1571.58	1808.06
39	14	10708	35486	0.40	1001.18	103.68			356.27	1546.80	1934.11	1804.48	1720.35	1684 78	1934.11
38	15	11473	38216	0.40	1072.31	109.04			377.69	1653.89	2060.17	1917.69	1833.56	1797 99	2060.17
37	16	12238	40945	0.40	1143.44	114.40			399.11	1760,98	2186.23	2030.90	1946.76	1911.20	2186.23
36	17	13002	43675	0.40	1214.57	119.77			420.52	1868.07	2312.28	2144.10	2059.97	2024.40	2312.28
35	18	13767	46405	0.40	1285.70	125.13			441.94	1975.16	2438.34	2257.31	2173.18	2137.61	2438.34
34	19	14532	49134	0.40	1356.83	130.49			463.35	2082.25	2564.40	2370.52	2286.38	2250.82	2564.40
33	20	15297	51864	0.40	1427.96	135.85			484.77	2189.34	2690.45	2483.72	2399.59	2364.03	2690.45
32	21	16062	54594	0.40	1499.09	141.22			506.18	2296.43	2816.51	2596.93	2512.80	2477.23	2816.51
31	22	16827	57323	0.40	1570.22	146.58			527.60	2403.52	2942.57	2710.14	2626.01	2590.44	2942.57
30	23	17591	60053	0.40	1641.35	151.94			549.02	2510.61	3068.62	2823.35	2739.21	2703.65	3068.62
29	24	18356	62783	0.40	1712.49	157.30			570.43	2617.70	3194.68	2936.55	2852.42	2816.86	3194.68
28 Mech	25	19121	65513	1.00	1783.62	168.03			666.04	2732.30	3445.87	3130.39	3046.25	3010.69	3445.87
27	26	19886	68242	0,40	1854.75	173.20			687.45	2839.12	3571.70	3243.36	3159.23	3123.66	3571.70
26	27	20651	70972	0.40	1925.88	178.56			708.87	2946.21	3697.75	3356.57	3272.43	3236.87	3697.75
25	28	21416	73702	0.40	1997.01	183.92			730.28	3053.30	3823.81	3469.77	3385.64	3350.07	3823.81
24	29	22180	76431	0.40	2068.14	189.28			751.70	3160.39	3949.87	3582.98	3498.85	3463.28	3949.87
23	30	22945	79161	0.40	2139.27	194.65			773.11	3267.48	4075.92	3696.19	3612.05	3576.49	4075.92
22	31	23710	81891	0.40	2210,40	200.01			794.53	3374.57	4201.98	3809.39	3725.26	3689.70	4201.98
21	32	24475	84620	0.40	2281.53	205.37			815.95	3481.60	4328.04	3922.60	3838.47	3802.90	4328.04
20	33	25240	8/350	0.40	2352.66	210.73			857.30	3588./5	4454.09	4035.81	3951.68	3916.11	4454.09
19	34	26005	90080	0.40	2423.79	216.10			858.78	3695.84	4580.15	4149.02	4064.88	4029.32	4580.15
18	35	20770	92809	0.40	2494.92	221.40			901.61	3802.93	4/00.21	4202.22	4178.09	4142.52	4/00.21
16	37	27334	98269	0.40	2637.18	220.02			923.02	4017.11	4052.20	4375.43	4404 50	4255.75	4052.20
15	38	29064	100998	0.40	2708 31	237.55			944 44	4124.20	5084 38	4601.84	4517.71	4482.15	5084.38
14 Cafeteria	39	29829	103728	1.00	2779.44	242.91			1020.92	4231.20	5298 54	4770.12	4685.99	4650.42	5298.54
13	40	30594	106458	0.40	2850.57	248.27			1042.34	4338.38	5424.60	4883.33	4799.19	4763.63	5424,60
12	41	31359	109188	0.40	2921.70	253.44			1063.76	4445.20	5550.42	4996.30	4912.17	4876.60	5550,42
11	42	32123	111917	0.40	2992.83	259.00			1085.17	4552.56	5676.71	5109.74	5025.61	4990.04	5676.71
10	43	32888	114647	0.40	3063.96	264.36			1106.59	4659.65	5802.77	5222.95	5138.82	5103.25	5802.77
9	44	33653	117377	0.40	3135.09	269.72			1128.00	4766.74	5928.82	5336.16	5252.02	5216.46	5928.82
8	45	34418	120106	0.40	3206.23	275.08			1149.42	4873.83	6054.88	5449.36	5365.23	5329.67	6054.88
7	46	35183	122836	0.40	3277.36	280.45			1170.83	4980.92	6180.94	5562.57	5478.44	5442.87	6180.94
6	47	35948	125566	0.40	3348.49	285.81			1192.25	5088.01	6306.99	5675.78	5591.65	5556.08	6306.99
5	48	36713	128295	0.40	3419.62	291.17			1213.66	5195.10	6433.05	5788.99	5704.85	5669.29	6433.05
4	49	37477	131025	0.40	3490.75	296.76			1235.08	5302.51	6559.38	5902.46	5818.33	5782.76	6559,38
3	50	38242	133755	0.40	3561.88	302.79			1256.50	5410.53	6686.24	6016.47	5932.34	5896.77	6686.24
2	51	39007	136484	0.40	3633.01	313.32			1277.91	5524.85	6818.49	6135,88	6051.74	6016.18	6818,49
1	52	39772	139214	0.40	3704.14	319.56			1299.33	5633.17	6945.60	6250,14	6166.00	6130.44	6945.60

Table 13: Column A4 load takedowns with LL reduction

COLUMN A4	(Located in Offi	ce Area) No LL	Reduction												
Story level	Column Below Level	Tributary Area (ft ²)	Live Load Influence Area (ft ²)	Live Load Beduction Factor	Dead Load (kips)	Wall Load (kips)	Roof Live Load (kips)	Snow Load (kips)	Floor Live Load (kips)	Column Load 1.4D (kips)	Column Load 1.2D+1.6L+.5(Lr or S) (kips)	Column Load 1.2D+1.6(Lr or S)+L (kips)	Column Load 1.2D+L+0.5(Lr or S) (kips)	Column Load 1.2D+L+0.2S (kips)	Column Design Load
52 Roof	1	765	0	1.00	76.48	28.41	95.61	13.38		146.85	164.11	248.25	164.11	128.55	248.25
51 Mech	2	1530	2730	1.00	147.61	38.97			76.48	261.22	384.52	422.76	338.63	303.07	422.76
50	3	2295	5459	9 1.00	218.75	44.69		-	152.97	368.81	599.12	591.47	507.34	471.77	599.12
49	4	3059	8189	1.00	289.88	50.05			229.45	475.90	813.28	759.74	675.61	640.05	813.28
48	5	3824	10919	1.00	361.01	55.42			305.94	582.99	1027.45	928.02	843.89	808.32	1027.45
4/	0	4589	13648	1.00	432.14	60.78			382.42	690.08	1241.62	1096.30	1012.16	976.60	1241.02
40	8	555 4 6119	10376	1.00	574.40	71.50			535.30	904.26	1433.78	1432.85	1348.71	1313.15	1669.95
44	9	6884	21838	1.00	645.53	76.87			611.88	1011.35	1884.12	1601.12	1516.99	1481 43	1884 12
43	10	7648	24567	7 1.00	716.66	82.23			688.36	1118.44	2098.28	1769.40	1685.27	1649.70	2098.28
42	11	8413	27297	7 1.00	787.79	87.59			764.84	1225.53	2312.45	1937.68	1853.54	1817.98	2312.45
41	12	9178	30027	7 1.00	858.92	92.95			841.33	1332.62	2526.62	2105.95	2021.82	1986.25	2526.62
40	13	9943	32756	5 1.00	930.05	98.32			917.81	1439.71	2740.78	2274.23	2190.09	2154.53	2740.78
39	14	10708	35486	5 1.00	1001.18	103.68			994.30	1546.80	2954.95	2442.50	2358.37	2322.81	2954.95
38	15	11473	38216	5 1.00	1072.31	109.04			1070.78	1653.89	3169.12	2610.78	2526.65	2491.08	3169.12
37	16	12238	40945	5 1.00	1143.44	114.40			1147.27	1760.98	3383.28	2779.06	2694.92	2659.36	3383.28
36	17	13002	43675	5 1.00	1214.57	119.77			1223.75	1868.07	3597.45	2947.33	2863.20	2827.63	3597.45
35	18	13767	46405	5 1.00	1285.70	125.13			1300.23	1975.16	3811.61	3115.61	3031.47	2995.91	3811.61
34	19	14532	49134	1 1.00	1356.83	130.49			1376.72	2082.25	4025.78	3283.88	3199.75	3164.18	4025.78
33	20	15297	51864	1 1.00	1427.96	135.85			1453.20	2189.34	4239.95	3452.16	3368.03	3332.46	4239.95
32	21	16062	54394	1.00	1499.09	141.22			1529.69	2296.43	4454.11	3620.43	3330.30	3500.74	4454.11
31	22	1082/	5/525	1.00	1570.22	140.38			1692.66	2403.32	4008.28	3788.71	3704.38	2827.20	4008.28
20	23	17371	62783	1.00	1712.49	157.30			1750.14	2617.70	5096.61	4125.26	4041.13	4005.56	5006.61
28 Mech	25	10121	65513	1.00	1783.62	168.03			1835.63	2732.30	5317.22	4799.97	4215.84	4180.28	5317.22
27	26	19886	68242	2 1.00	1854.75	173.20			1912.11	2839.12	5531.15	4468.02	4383.88	4348.32	5531.15
26	27	20651	70972	2 1.00	1925.88	178.56			1988.59	2946.21	5745.31	4636.29	4552.16	4516.59	5745.31
25	28	21416	73702	2 1.00	1997.01	183.92			2065.08	3053.30	5959.48	4804.57	4720.43	4684.87	5959.48
24	29	22180	76431	1.00	2068.14	189.28			2141.56	3160.39	6173.65	4972.84	4888.71	4853.15	6173.65
23	30	22945	79161	1.00	2139.27	194.65			2218.05	3267.48	6387.81	5141.12	5056.99	5021.42	6387.81
22	31	23710	81891	1.00	2210.40	200.01			2294.53	3374.57	6601.98	5309.40	5225.26	5189.70	6601.98
21	32	24475	84620) 1.00	2281.53	205.37			2371.02	3481.66	6816.15	5477.67	5393.54	5357.97	6816.15
20	33	25240	87350	1.00	2352.66	210.73			2447.50	3588.75	7030.31	5645.95	5561.81	5526.25	7030.31
19	34	26005	90080	1.00	2423.79	216.10			2523.98	3695.84	7244.48	5814.22	5730.09	5694.53	7244.48
18	35	26770	92809	1.00	2494.92	221.46			2600.47	3802.93	7458.65	5982.50	5898.37	5862.80	7458.65
17	30	2/534	95539	1.00	2566.05	226.82			2676.95	3910.02	7672.81	6150.//	60066.04	6031.08	7672.81
10	37	20299	96209	1.00	2037.18	232.18			2755.44	4017.11	/860.98	6487.33	6403.19	6367.63	/000.90
14 Cafeteria	30	29829	103728	3 1.00	2708.31	237.33			2825.52	4124.20	8315 31	6655.60	6571.47	6535.90	8101.13
13	40	30594	106458	1.00	2850.57	248.27			2982.89	4338 38	8529.48	6823.88	6739.75	6704.18	8529.48
12	41	31359	109188	3 1.00	2921.70	253.44			3059.38	4445.20	8743.41	6991.92	6907.79	6872.22	8743.41
11	42	32123	111917	7 1.00	2992.83	259.00			3135.86	4552.56	8957.81	7160.43	7076.30	7040.73	8957.81
10	43	32888	114647	7 1.00	3063.96	264.36			3212.34	4659.65	9171.98	7328.71	7244.57	7209.01	9171.98
9	44	33653	117377	7 1.00	3135.09	269.72			3288.83	4766.74	9386.15	7 4 96.98	7412.85	7377.28	9386.15
8	45	34418	120106	5 1.00	3206.23	275.08			3365.31	4873.83	9600.31	7665.26	7581.13	7545.56	9600.31
7	46	35183	122836	5 1.00	3277.36	280.45			3441.80	4980.92	9814.48	7833.53	7749.40	7713.84	9814.48
6	47	35948	125566	5 1.00	3348.49	285.81			3518.28	5088.01	10028.65	8001.81	7917.68	7882.11	10028.65
5	48	36713	128295	5 1.00	3419.62	291.17			3594.77	5195.10	10242.81	8170.09	8085.95	8050.39	10242.81
4	49	37477	131025	1.00	3490.75	296.76			3671.25	5302.51	10457.25	8338.63	8254.50	8218.93	10457.25
3	50	38242	133755	1.00	3561.88	302.79			3747.73	5410.53	10672.22	8507.71	8423.58	8388.01	10672.22
1	52	39007	130484	1.00	3033.01	313.32			3824.22	5622.17	10892.58	8082.18	0.05 ecs	8362.48	10892.58
1	14	39/12	139214	1.00	5704.14	519.50			3900.70	5055.17	11107.80	0001.01	0707.50	0751.01	11107.00

Table 14: Column A4 load takedowns without LL reduction

						_
Built-up Exterior Box Colu Material Propostion	mn					
Naterial Properties:	F	50 kg				
Dedin	Fy-	50 KS	1			
Geometric Properties:	r _u -	0.5 KS	1			
ocometrie riopernesi	d=	30 in				
	b _f =	30 in				
	t _f =	4 in				
	h=	22 in				
	t _w =	7 in				
Calculate built-un section r	properties (ignoring	r fillet welds):				
Calculate built-up section p	A ₁ =	120 in	2	I _{vv1} -	20440 in ⁴	
	$\Lambda_{a} =$	154 in	2	I=	6211 in ⁴	
	$\Delta_{-}=$	154 in	2	I_=	6211 in ⁴	
	$\Lambda =$	120 in	2	I =	20440 in ⁴	
	A =	549 in	2	I _{XX4}	9000 in ⁴	
	Ag-	546 III		Iyy1-	11755 in ⁴	
	NA _{xx} =	15 m	4	I _{yy2} =	11/55 m	
	$I_{xxT} =$	53,302.67 m		I _{yy3} =	11/55 m	
	NA _{yy} =	15 in	4	I _{yy4} =	9000 m	
	I _{yyT} =	41,510.67 in				
	$r_x =$	9.862 in				
	$r_y =$	8.703 in				
Check Slenderness ratio:						
	K =K =	1.0	alumn is ninned in x-di	rection		
	L_=L_=	165 in	stanni is princa ni x-an	cetton		
	KL/r < 200					
	$K_x L_x / r_x =$	16.73	<	200	OK	
	$K_yL_y/r_y=$	18.96	<	200	ок	
Calculate the elastic flexura	al buckling stress:					
Since the unbraced length is :	the same for both a	es the v-v avis u	ill govern by inspection			
onice the anomeeu tengar is	are sume for board	ies, ale y y aas n	in govern oy inspection			
$K_{y}I_{y}/r_{y}=$	18.96	<	$4.71(E/F_y)^{1/2} =$	133.68 F	cr=[0.658^(Fy/Fe)]Fy	
$F_e = \pi^2 E / (KL/r)^2 =$	796.36 ksi					
$F_{cr} = [0.658^{Fy/Fe}]F_y =$	48.70 ksi					
Torsional buckling will not g elastic critical torsional buck	overn since KL _y > I ling stress	ζL _z ,therefore no n	eed to check			
$\phi P_n = 0.9 F_{cr} A_g =$ (Neglecting LL Reduction)		24,020.40 k		>	6,433.05 k	
$\phi P_{r}=0.9F_{r}A_{r}=$		24 020 40 k		>	10 242 81 k	

Figure 26: Built-up Exterior Box Column Analysis

APPENDIX D: WIND ANALYSIS

Method 2 Wind Loa	Method 2 Wind Load Design Variables									
Variable	Value	Unit	Reference							
V	110	miles/hr	ASCE 7-05 6.5.4							
Ku	0.85		ASCE 7-05 6.5.4.4							
Occupancy Cat.	ш		IBC Table 1604.5							
I	1.15		ASCE 7-05 6.5.5							
Surf. Rough. Cat.	В		ASCE 7-05 6.5.2							
Exp. Cal.	В		ASCE 7-05 6.5.6							
K _{zt}	1		ASCE 7-05 6.5.7							
α	7.0		ASCE 7-05 6.5.6.6							
Zg	1200		ASCE 7-05 6.5.6.6							

Table 15: Wind Load Design Variables

Gust Factor {Tower}						
Variable	Equation	Dire	ction	Unit	Reference (ASCE 7)	Comments
n (f)	150/5	E/ W	14/5		005.0	Flouible Observations
// ₁ (/ _{n1})	150/h	0.20121	0.20121		C6.5.8	Flexible Structure
gų = gv		3.4	3.4		6.5.8.2	
gr	(2LN(3600n ₁)) ^{1/2} + (0.577/(2LN(3600n ₁)) ^{1/2}	3.7881	3.7881		6.5.8.2	
h		745.5	745.5	ft		
z bar	.6h	447.3	447.3	ft		
Z _{min}		30	30	ft	Table 6-2	z bar <u>></u> z _{min} (ok)
c		0.3	0.3		Table 6-2	
I _z	c(33/z) ^{1/6}	0.1943	0.1943		6.5.8.1	
l		320	320	ft	Table 6-2	
ε		0.3333	0.3333		Table 6-2	
Ļ	ℓ(z/33) ^ε	762.98	762.98	ft	6.5.8.1	
В		194.00	157.00	ft		
L		157.00	194.00	ft		
Q	(1/(1+0.63((B+h)/L ₂) ^{0.63}) ^{1/2}	0.76288	0.76690		6.5.8.1	
V		110	110	miles/hr	6.5.4	
b bar		0.45	0.45		Table 6-2	
α bar		0.25	0.25		Table 6-2	
Vz	b(z/33)~V(88/60)	139.3022	139.3022	ft/s	6.5.8.2	
N ₁	n ₁ L _z /V _z	1.1020	1.1020		6.5.8.2	
R _n	7.47N ₁ /(1+10.3N ₁) ^{5/3}	0.12474	0.12474		6.5.8.2	
η (R _h)	4.6n1h/Vz	4.9533	4.9533		6.5.8.2	
R _h	1/η - (1/2η ²)(1-e ^{-2η})	0.18151	0.18151		6.5.8.2	
η (R _B)	4.6n1B/Vz	1.2890	1.0431		6.5.8.2	
R _B	1/η - (1/2η ²)(1-e ^{-2η})	0.49772	0.55619		6.5.8.2	
η (R _L)	15.4n ₁ L/V ₂	3.4923	4.3153		6.5.8.2	
RL	1/η - (1/2η ²)(1-e ^{-2η})	0.24539	0.20489		6.5.8.2	
β		0.01	0.01		C6.5.8	
R	$((1/\beta)(R_nR_hR_B(.53+0.47R_L)))^{1/2}$	0.852786	0.888092		6.5.8.2	
G _f	$\begin{array}{c} 0.925(1{+}1.7l_{z}(g_{Q}^{}Q^{2}{+}g_{R}^{}R^{2})^{1/2})/\\ (1{+}1.7g_{y}l_{z})\end{array}$	1.032	1.048		6.5.8.2	

Table 16: Tower Gust Factor

E/W Wind Direct	E/W Wind Direction (Tower) {h/L >1.0 & q < 10}										
L/B	١	Wall Pressure Coeff. (Cp)								
	Windward	Leeward	Side								
0.809	0.8	-0.5	-0.7								
h/L	Roof Pressure Coeff. (Cp)										
	Roof Area (ft ²)	Reduction	Ср								
4.748	27400	0.8	-1.040								
Internal Pressure											
GCpi	0.18										
[F 6-5, ASCE 7-05	-										

Table 17: Tower E/W Wind Pressure Coefficients

L/B	Wall Pressure Coeff. (Cp)							
	Windward	Leeward	Side					
1.236	0.8	-0.453	-0.7					
h/L	Roof Pressure Coeff. (Cp)							
	Roof Area (ft ²)	Reduction	Ср					
3.843	27400	0.8	- 1 .040					
mal Pressure								
GC _{pt}	0.18							

[F 6-5, ASCE 7-05] Table 18: Tower N/S Wind Pressure Coefficients

Figure 27: Typical Wind Force Calculation

Gust Factor {Po	dium}				
Variable	Equation	N/S	Unit	Reference (ASCE 7)	Comments
n 1	100/h	1.16279		C6.5.8	Rigid Structure
g _q = g _v		3.4		6.5.8.2	
h		86	ft		
z bar	.6h	51.6	ft		
Z _{min}		30	ft	Table 6-2	z bar <u>></u> z _{min} (ok)
с		0.3		Table 6-2	
l _z	c(33/z) ^{1/6}	0.2785		6.5.8.1	
£		320	ft	Table 6-2	
8		0.3333		Table 6-2	
L _z	٤(z/33) ^e	371.42	ft	6.5.8.1	
В		245.00	ft		
Q	(1/(1+0.63((B+h)/L _z) ^{0.63}) ^{1/2}	0.79408		6.5.8.1	
G	.925((1+1.7g ₀ I,Q)/(1+1.7g ₀ I,))	0.80752		6.5.8.1	

Table 19: Podium Gust Factor

N/S Wind Directi	ion Cp (Pod	ium) {h/L ≤	0.5 & θ < 10)}						
L/B		Wall Pressure Coeff. (Cp)								
	Wind	ward	Leeward		Si	Side				
0.759	0	.8	-0	0.5 -0.7).7				
h/L		R	re Coeff. (Cp	»)						
	0' - 34'	34'	- 68'	68' •	> 136'					
0.162	-0.238	-0.2	238	-0.206		-0.190				
Internal Pressure	•									
GC _{pi}	0.18									
[F 6-5, ASCE 7-05]									

Table 20: Podium N/S Wind Pressure Coefficients

Calculated Wind Pressures in North/South Direction of Podium {Using Method 2, ASCE 7-05}							
	Height	K _z ª	q_z & q_h (psf) {.00256K _z K _z tK _d V ² I}	External Pressure (psf)	Internal Pressure (psf)	Net Pressure p (psf)	
	(2)			{qGC _p }	{q _h GC _{pi} }	+ (GC _{pi})	- (GC _{pi})
	15.0	0.57	17.40	11.2	5.2	6.1	16.4
Windward	33.4	0.72	21.87	14.1	5.2	9.0	19.3
	48.9	0.81	24.39	15.8	5.2	10.6	20.9
	63.8	0.87	26.31	17.0	5.2	11.8	22.2
	77.8	0.92	27.85	18.0	5.2	12.8	23.2
	86.0*	0.95	28.66	18.5	5.2	13.4	23.7
Leeward	All		28.66	-11.6	5.2	-16.7	-6.4
Roof	86.0 ^b		28.66	-5.5	5.2	-10.7	-0.3
	86.0 ^c		28.66	-5.5	5.2	-10.7	-0.3
	86.0 ^d		28.66	-4.8	5.2	-9.9	0.4
	86.0 °		28.66	-4.4	5.2	-9.6	0.8

* Top of Podium

a Kz = 2.01(15/zg)2/a {zg < 15ft} -or- Kz = 2.01(z/zg)2/a {15 ft < z < zg} [T 6-2, ASCE 7-05]

^b Windward edge to 34'

^c 34' to 68'

^d 68' to 136'

^e 136' to 186'

Note: Wind pressures on East/West direction of podium were not calculated because East & West faces are not exposed.

Table 21: North/ West Wind Pressure on Podium

Calculated Wind Forces in North/South Direction of Podium{Using Method 2, ASCE 7-05}						
Level	Height Above Ground (ft)	Load (kips)	Shear (kips)	Moment (ft-kips)		
2	25.66	129	370	3322		
3	41.13	104	266	4259		
4	56.59	104	162	5901		
5	70.92	102	61	7210		
6	86.00	61	0	5204		
Total	86.00	499	499	25895		

Table 22: Wind Loads, Shears & Moment on Podium

18.5 psf	Roof	
	Floor 5	
18.0 psf	Floor 4	
17.0 psf	Floor 3	
15.8 psf	Floor 2	
14.1 psf		
11.2 psf	Floor 1	11.6 psf

Figure 28: Podium Wind Pressure Diagram

Figure 29: Podium Wind Force Diagram

APPENDIX E: SEISMIC ANALYSIS

Seismic Weight by Floor								
	a	area (sf)	w _i (psf)		h (fr)	L (fa)	
level	floor	façade	floor	façade	vv _i (#)	n _x (π)	n _i (π)	w _i *h _i ~
1	96625	17639	113	13	11147926.04	25.20	25.2	7.08E+09
2	96625	10828	113	13	11059390.63	15.47	40.7	1.83E+10
3	96625	10828	113	13	11059390.63	15.47	56.1	3.49E+10
4	96625	10026	113	13	11048963.54	14.32	70.5	5.49E+10
5	21550	9625	113	13	2560275	13.75	84.2	1.82E+10
6	21550	9625	113	13	2560275	13.75	98.0	2.46E+10
7	21550	9625	113	13	2560275	13.75	111.7	3.19E+10
8	21550	9625	113	13	2560275	13.75	125.5	4.03E+10
9	21550	9625	113	13	2560275	13.75	139.2	4.96E+10
10	21550	9625	113	13	2560275	13.75	153.0	5.99E+10
11	21550	9625	113	13	2560275	13.75	166.7	7.12E+10
12	21550	9625	113	13	2560275	13.75	180.5	8.34E+10
13	21550	10442	113	13	2570891.667	14.92	195.4	9.81E+10
14	21550	8808	113	13	2549658.333	12.58	208.0	1.10E+11
15	21550	9625	113	13	2560275	13.75	221.7	1.26E+11
16	21550	9625	113	13	2560275	13.75	235.5	1.42E+11
17	21550	9625	113	13	2560275	13.75	249.2	1.59E+11
18	21550	9625	113	13	2560275	13.75	263.0	1.77E+11
19	21550	9625	113	13	2560275	13.75	276.7	1.96E+11
20	21550	9625	113	13	2560275	13.75	290.5	2.16E+11
21	21550	9625	113	13	2560275	13.75	304.2	2.37E+11
22	21550	9625	113	13	2560275	13.75	318.0	2.59E+11
23	21550	9625	113	13	2560275	13.75	331.7	2.82E+11
24	21550	9625	113	13	2560275	13.75	345.5	3.06E+11
25	21550	9625	113	13	2560275	13.75	359.2	3.30E+11
26	21550	9625	113	13	2560275	13.75	373.0	3.56E+11
27	21550	10179	113	13	2567479.167	14.54	387.5	3.86E+11
28	21550	19279	113	13	2685779.167	27.54	415.0	4.63E+11
29	21550	9625	113	13	2560275	13.75	428.8	4.71E+11
30	21550	9625	113	13	2560275	13.75	442.5	5.01E+11
31	21550	9625	113	13	2560275	13.75	456.3	5.33E+11
32	21550	9625	113	13	2560275	13.75	470.0	5.66E+11
33	21550	9625	113	13	2560275	13.75	483.8	5.99E+11
34	21550	9625	113	13	2560275	13.75	497.5	6.34E+11
35	21550	9625	113	13	2560275	13.75	511.3	6.69E+11
36	21550	9625	113	13	2560275	13.75	525.0	7.06E+11
37	21550	9625	113	13	2560275	13.75	538.8	7.43E+11
38	21550	9625	113	13	2560275	13.75	552.5	7.82E+11
39	21550	9625	113	13	2560275	13.75	566.3	8.21E+11
40	21550	9625	113	13	2560275	13.75	580.0	8.61E+11
41	21550	9625	113	13	2560275	13.75	593.8	9.03E+11
42	21550	9625	113	13	2560275	13.75	607.5	9.45E+11
43	21550	9625	113	13	2560275	13.75	621.3	9.88E+11
44	21550	9625	113	13	2560275	13.75	635.0	1.03E+12
45	21550	9625	113	13	2560275	13.75	648.8	1.08E+12
46	21550	9625	113	13	2560275	13.75	662.5	1.12E+12
47	21550	9625	113	13	2560275	13.75	676.3	1.17E+12
48	21550	9625	113	13	2560275	13.75	690.0	1.22E+12
49	21550	9625	113	13	2560275	13.75	703.8	1.27E+12
50	21550	10063	113	13	2565962.5	14.38	718.2	1.32E+12
51	21550	18664	113	13	2677786.333	26.66	744.8	1.49E+12
52	21550	12306	113	13	2595128	17.58	762.4	1.51E+12
ROOF	27400	0	200	13	5480000	0.00	762.4	3.19E+12
				2.00	1/2979.631	K	zw _i ≁h _i	2.95E+13

Table 23: Seismic Weight by Floor

Barben | Bonfanti | Perez IPD/BIM Structural Option Dr. Andres Lepage 10/05/2009

Lateral Seismic Force				
level	C _{vx}	Fx		
1	0.0002	0.441		
2	0.0006	1.139		
3	0.0012	2.170		
4	0.0019	3.416		
5	0.0006	1.131		
6	0.0008	1.530		
7	0.0011	1.990		
8	0.0014	2.510		
9	0.0017	3.090		
10	0.0020	3.730		
11	0.0024	4.431		
12	0.0028	5.192		
13	0.0033	6.111		
14	0.0037	6.867		
15	0.0043	7.837		
16	0.0048	8.839		
17	0.0054	9.902		
18	0.0060	11.025		
19	0.0067	12.208		
20	0.0073	13.451		
21	0.0080	14.755		
22	0.0088	16.119		
23	0.0096	17.543		
24	0.0104	19.027		
25	0.0112	20.572		
26	0.0121	22.177		
27	0.0131	24.008		
28	0.0157	28.811		
29	0.0160	29.314		
30	0.0170	31.225		
31	0.0181	33.195		
32	0.0192	35.226		
33	0.0203	37.317		
34	0.0215	39.468		
35	0.0227	41.680		
36	0.0240	43.952		
37	0.0252	46.284		
38	0.0265	48.677		
39	0.0279	51.129		
40	0.0292	53.642		
41	0.0306	56.216		
42	0.0321	58.849		
43	0.0336	61.543		
44	0.0351	64.298		
45	0.0366	67.112		
46	0.0382	69.987		
47	0.0398	72.922		
48	0.0414	75.917		
49	0.0431	78.973		
50	0.0449	82.415		
51	0.0504	92.511		
52	0.0512	93.938		
ROOF	0.1081	198.36		
	V= ΣF _x (k)	1834.2		

Soil Classification						
code	site class	reference	comments			
<u>NYCBC:</u>	2-65 (medium hard rock)	T 11-2	recommended by geotechnical report			
	4-65 (soft rock)	T 11-2	in areas of lower bearing capacity			
<u>ASCE 7-05:</u>	seismic design category C	T 20.3-1	conservative estimate			

Table 24: Soil Classification

Spectral Response Acceleration					
T=0).2s	T=1.0s			
S _{MS}	0.436	S _{M1}	0.119		
S _{DS}	0.291	S _{D1}	0.08		

Table 25: Spectral Response Acceleration

Barben | Bonfanti | Perez IPD/BIM Structural Option Dr. Andres Lepage 10/05/2009

SEISMIC FORCE CAL	CULATIONS:
+ SOIL CLASS (FICATIO	SDC C-ASCE7-05
+ SPECTRAL RESPONS	E ACCELERATION
- USING USGS GROU TOOL :	IND MOTION PARAMETER
LAT: 40.7561 LONG: -73.990	92 FOR NY TIMES 130 ADDRESS
- SDC C: Fa=1: Fr=1.	2 LATLONG.HTTAL)
T=0.25 Sms	= 0.436g 50s = 0.291g
T= 1.0 5 5Mg	- 0.119 g 501 = 0.080g
- OCCUPANCY CATE	= GORN II
T 11.5-1 (ASCE)	: I = 1,25
T11.6-1: 505=	0.2919 > 0.167 > SOCB + 0.33
T11.6-2: 501=	0.000g 70.067 -> SDCB 40.133
" USE SOC O	IN CALCULATIONS
- CH. 11.6 : 5, 40,75	SDI 2 22-
11. 7. 5 1 5 =	SDS 0.291 0.2755
12.8.2.1 Ta	= C+hn T12.8-2 G=0.02
	= (0.02)(762.4) ^{0.75} x=0.75 = 2.902s
#1: Ta 2 0.BTs 2,9025 ×	0.2205 -> CANNOT USE TILG-LONLY

Figure 30: Seismic Calculations and Variables

Figure 31: Seismic Equivalent Lateral Force Calculations

Barben | Bonfanti | Perez IPD/BIM Structural Option Dr. Andres Lepage 10/05/2009 The New York Times Building New York, NY Technical Report #1

APPENDIX F: SITE PHOTOS

Figure 32: Exterior X-bracing

Figure 34: Box Column

Figure 35: Outrigger on 28th Floor